OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 10 — Oct. 1, 2002
  • pp: 2427–2436

Efficient numerical approach to the evaluation of Kramers-Kronig transforms

Frederick W. King  »View Author Affiliations


JOSA B, Vol. 19, Issue 10, pp. 2427-2436 (2002)
http://dx.doi.org/10.1364/JOSAB.19.002427


View Full Text Article

Acrobat PDF (180 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method is presented to deal with the numerical evaluation of Kramers–Kronig transforms (the Hilbert transforms of even and odd functions on the positive real axis). The general Hilbert transform is also treated. The functions involved must be continuous on the integration interval with suitable asymptotic behavior for large values of the argument and must have an appropriate functional form in the vicinity of the singularity of the integrand of the transform. The approach is based on a specialized Gaussian quadrature technique that uses the weight function log x<sup>−1</sup>. This choice allows the region in the vicinity of the singularity to be swept into the quadrature weights and abscissa values. Application to the Lorentzian and Gaussian line profiles is discussed.

© 2002 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(160.4760) Materials : Optical properties

Citation
Frederick W. King, "Efficient numerical approach to the evaluation of Kramers-Kronig transforms," J. Opt. Soc. Am. B 19, 2427-2436 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-10-2427


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation (Academic, New York, 1971), Vol. 1.
  2. J. N. Pandey, The Hilbert Transform of Schwartz Distributions and Applications (Wiley-Interscience, New York, 1996).
  3. H. A. Kramers, “La diffusion de la lumière par les atomes,” Atti. Congr. Int. Fis. 2, 545–557 (1927).
  4. H. A. Kramers, “Die dispersion und absorption von Röntgenstrahlen,” Phys. Z. 30, 522–523 (1929).
  5. R. de L. Kronig, “On the theory of dispersion of x-rays,” J. Opt. Soc. Am. 12, 547–557 (1926).
  6. E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, 2nd ed. (Oxford University, London, 1948).
  7. I. M. Longman, “On the numerical evaluation of Cauchy principal values of integrals,” Math. Tables Aids Comp. 12, 205–207 (1958).
  8. L. M. Delves, “The numerical evaluation of principal value integrals,” Comput. J. (Cambridge) 10, 389–391 (1967).
  9. I. H. Sloan, “The numerical evaluation of principal-value integrals,” J. Comput. Phys. 3, 332–333 (1968).
  10. H. Morawitz, “A numerical approach to principal value integrals in dispersion relations,” J. Comput. Phys. 6, 120–123 (1970).
  11. R. Piessens, “Numerical evaluation of Cauchy principal values of integrals,” BIT 10, 476–480 (1970).
  12. K. Atkinson, “The numerical evaluation of the Cauchy transform on simple closed curves,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. 9, 284–299 (1972).
  13. D. F. Paget and D. Elliott, “An algorithm for the numerical evaluation of certain Cauchy principal value integrals,” Numer. Math. 19, 373–385 (1972).
  14. D. B. Hunter, “The numerical evaluation of Cauchy principal values of integrals by Romberg integration,” Numer. Math. 21, 185–192 (1973).
  15. S. J. Collocott, “Numerical solution of Kramers–Kronig transforms by a Fourier method,” Comp. Phys. Commun. 13, 203–206 (1977).
  16. P. Rabinowitz, “The numerical evaluation of Cauchy principal value integrals,” in Symposium on Numerical Mathematics (University of Natal, Durban, South Africa, 1978), pp. 53–82.
  17. S. J. Collocott and G. J. Troup, “Adaptation: numerical solution of the Kramers–Kronig transforms by trapezoidal summation as compared to a Fourier method,” Comput. Phys. Commun. 17, 393–395 (1979).
  18. O. E. Taurian, “A method and a program for the numerical evaluation of the Hilbert transform of a real function,” Comput. Phys. Commun. 20, 291–307 (1980).
  19. T. Andersson, J. Johansson, and H. Eklund, “Numerical solution of the Hilbert transform for phase calculation from an amplitude spectrum,” Math. Computers Simul. 23, 262–266 (1981).
  20. H.-P. Liu and D. D. Kosloff, “Numerical evaluation of the Hilbert transform by the fast Fourier transform (FFT) technique,” Geophys. J. R. Astron. Soc. 67, 791–799 (1981).
  21. G. Monegato, “The numerical evaluation of one-dimensional Cauchy principal value integrals,” Computing 29, 337–354 (1982).
  22. P. R. Rabinowitz, “Gauss–Kronrod integration rules for Cauchy principal value integrals,” Math. Comput. 41, 63–78 (1983).
  23. G. A. Gazonas, “The numerical evaluation of Cauchy principal value integrals via the fast Fourier transform,” Int. J. Comput. Math. 18, 277–288 (1986).
  24. P. Rabinowitz, “Some practical aspects in the numerical evaluation of Cauchy principal value integrals,” Int. J. Comput. Math. 20, 283–298 (1986).
  25. K. Ohta and H. Ishida, “Comparison among several numerical integration methods for Kramers–Kronig transformation,” Appl. Spectrosc. 42, 952–957 (1988).
  26. P. Rabinowitz and D. S. Lubinsky, “Noninterpolatory integration rules for Cauchy principal value integrals,” Math. Comput. 53, 279–295 (1989).
  27. B. D. Vecchia, “Two new formulas for the numerical evaluation of the Hilbert transform,” BIT Numer. Math. 34, 346–360 (1994).
  28. K. Diethelm, “Error estimates for a quadrature rule for Cauchy principal value integrals,” Proc. Symp. Appl. Math. 48, 287–291 (1994).
  29. K. Diethelm, “Nonoptimality of certain quadrature rules for Cauchy principal value integrals,” Z. Angew. Math. Mech. 74, T689–T690 (1994).
  30. K. Diethelm, “Modified compound quadrature rules for strongly singular integrals,” Computing 52, 337–354 (1994).
  31. K. Diethelm, “Uniform convergence of optimal order quadrature rules for Cauchy principal value integrals,” J. Comput. Appl. Math. 56, 321–329 (1994).
  32. K. Diethelm, “Asymptotically sharp error bounds for a quadrature rule for Cauchy principal value integrals based on piecewise linear interpolation,” Approx. Theory Appl. (N.S.) 11, 78–89 (1995).
  33. K. Diethelm, “Gaussian quadrature formulae of the third kind for Cauchy principal value integrals: basic properties and error estimates,” J. Comput. Appl. Math. 65, 97–114 (1995).
  34. K. Diethelm, “The order of convergence of modified interpolatory quadratures for singular integrals of Cauchy type,” Z. Angew. Math. Mech. 75, S621–S622 (1995).
  35. K. Diethelm, “A definiteness criterion for linear functionals and its application to Cauchy principal value quadrature,” J. Comput. Appl. Math. 66, 167–176 (1996).
  36. K. Diethelm, “Definite quadrature formulae for Cauchy principal value integrals,” Bolyai Soc. Math. Stud. 5, 175–186 (1996).
  37. K. Diethelm, “Peano kernels and bounds for the error constants of Gaussian and related quadrature rules for Cauchy principal value integrals,” Numer. Math. 73, 53–63 (1996).
  38. K. Diethelm, “New error bounds for modified quadrature formulas for Cauchy principal value integrals,” J. Comput. Appl. Math. 82, 93–104 (1997).
  39. K. Diethelm, “A method for the practical evaluation of the Hilbert transform on the real line,” J. Comput. Appl. Math. 112, 45–53 (1999).
  40. K. Diethelm and P. Köhler, “Asymptotic behaviour of fixed-order error constants of modified quadrature formulae for Cauchy principal value integrals,” J. Inequal. Appl. 5, 167–190 (2000).
  41. F. W. King, G. J. Smethells, G. T. Helleloid, and P. J. Pelzl, “Numerical evaluation of Hilbert transforms for oscillatory functions: a convergence accelerator approach,” Comput. Phys. Commun. 145, 256–260 (2002).
  42. G. Andermann, A. Caron, and D. A. Dows, “Kramers–Kronig dispersion analysis of infrared reflectance bands,” J. Opt. Soc. Am. 55, 1210–1216 (1965).
  43. D. M. Roessler, “Kramers–Kronig analysis of non-normal incidence reflection,” Br. J. Appl. Phys. 16, 1359–1366 (1965).
  44. D. M. Roessler, “Kramers–Kronig analysis of reflection data III. Approximations, with reference to sodium iodide,” Br. J. Appl. Phys. 17, 1313–1317 (1966).
  45. K. Kozima, W. Suëtaka, and P. N. Schatz, “Optical constants of thin films by a Kramers–Kronig method,” J. Opt. Soc. Am. 56, 181–184 (1966).
  46. C. A. Emeis, L. J. Oosterhoff, and G. de Vries, “Numerical evaluation of Kramers–Kronig relations,” Proc. R. Soc. London, Ser. A 297, 54–65 (1967).
  47. G. Andermann, C. K. Wu, and E. Duesler, “Kramers–Kronig phase-angle partitioning method for disclosing systematic errors in infrared reflectance data,” J. Opt. Soc. Am. 58, 1663–1664 (1968).
  48. R. K. Ahrenkiel, “Modified Kramers–Kronig analysis of optical spectra,” J. Opt. Soc. Am. 61, 1651–1655 (1971).
  49. R. K. Ahrenkiel, “Modified Kramers–Kronig analysis of optical spectra: erratum,” J. Opt. Soc. Am. 62, 1009 (1972).
  50. J. D. Neufeld and G. Andermann, “Kramers–Kronig dispersion-analysis method for treating infrared transmittance data,” J. Opt. Soc. Am. 62, 1156–1162 (1972).
  51. D. Parris and S. J. Van Der Walt, “A new numerical method for evaluating the Kramers–Kronig transformation,” Anal. Biochem. 68, 321–327 (1975).
  52. A. Balzarotti, E. Colavita, S. Gentile and R. Rosei, “Kramers–Krönig analysis of modulated reflectance data investigation of errors,” Appl. Opt. 14, 2412–2417 (1975).
  53. M. Rasigni and G. Rasigni, “Optical constants of lithium deposits as detected from the Kramers–Kronig analysis,” J. Opt. Soc. Am. 67, 54–59 (1977).
  54. K.-E. Peiponen and E. M. Vartiainen, “Kramers–Kronig relations in optical data inversion,” Phys. Rev. B 44, 8301–8303 (1991).
  55. J. H. Bertie and S. L. Zhang, “Infrared intensities of liquids. IX. The Kramers–Kronig transform, and its approximation by the finite Hilbert transform via fast Fourier transforms,” Can. J. Chem. 70, 520–531 (1992).
  56. P. P. Kircheva and G. B. Hadjichristov, “Kramers–Kronig relations in FWM spectroscopy,” J. Phys. B 27, 3781–3793 (1994).
  57. J. H. Bertie and Z. Lan, “An accurate modified Kramers–Kronig transformation from reflectance to phase shift on attenuated total reflection,” J. Chem. Phys. 105, 8502–8514 (1996).
  58. K.-E. Peiponen, E. M. Vartiainen, and T. Asakura, “Phase retrieval in optical spectroscopy: resolving optical constants from power spectra,” Appl. Spectrosc. 50, 1283–1289 (1996).
  59. K.-E. Peiponen, E. M. Vartiainen, and T. Asakura, “Complex analysis in dispersion theory,” Opt. Rev. 4, 433–441 (1997).
  60. C. W. Peterson and B. W. Knight, “Causality calculations in the time domain: an efficient alternative to the Kramers–Kronig method,” J. Opt. Soc. Am. 63, 1238–1242 (1973).
  61. D. W. Johnson, “A Fourier series method for numerical Kramers–Kronig analysis,” J. Phys. A. Math. Gen. 8, 490–495 (1975).
  62. F. W. King, “A Fourier series algorithm for the analysis of reflectance data,” J. Phys. C 10, 3199–3204 (1977).
  63. F. W. King, “Analysis of optical data by the conjugate Fourier-series approach,” J. Opt. Soc. Am. 68, 994–997 (1978).
  64. D. Y. Smith, “Dispersion theory, sum rules, and their application to the analysis of optical data,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985), pp. 35–68.
  65. K.-E. Peiponen, E. M. Vartiainen, and T. Asakura, Dispersion, Complex Analysis and Optical Spectroscopy (Springer-Verlag, Berlin, 1999).
  66. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in Fortran 77, 2nd ed. (Cambridge University, Cambridge, England, 1992).
  67. A. H. Stroud and D. Secrest, Gaussian Quadrature Formulas (Prentice-Hall, Englewood Cliffs, N. J., 1966).
  68. F. W. King, K. J. Dykema, and A. D. Lund, “Calculation of some integrals for the atomic three-electron problem,” Phys. Rev. A 46, 5406–5416 (1992).
  69. V. I. Krylov and A. A. Pal’tsev, “On numerical integration of functions with logarithmic and power singularities,” Vesci Akad. Nauk BSSR Ser. Fiz. Techn. Nauk 14–23 (1963).
  70. D. G. Anderson, “Gaussian quadrature formula for ∫01−ln(x)f(x)dx,” Math. Comput. 19, 477–481 (1965).
  71. B. Danloy, “Numerical construction of Gaussian quadrature formulas for ∫01(−log x)xα f(x)dx and ∫01 Em(x)f(x)dx,” Math. Comput. 27, 861–869 (1973).
  72. R. A. Sack and A. F. Donovan, “An algorithm for Gaussian quadrature given modified moments,” Numer. Math. 18, 465–478 (1972).
  73. S. Wolfram, The Mathematica Book, 4th ed. (Cambridge University, Cambridge, England, 1999).
  74. D. H. Bailey, “Automatic translation of Fortran programs to multiprecision,” RNR Technical Rep. RNR-91–025, which is available from the author: dbailey@nas.nasa.gov.
  75. D. H. Bailey, “MPFUN: a portable high performance multiprecision package,” RNR Technical Rep. RNR-90–022, which is available from the author: dbailey@nas.nasa.gov.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited