OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 11 — Nov. 1, 2002
  • pp: 2573–2589

Nonlinear phase shifts induced by semiconductor optical amplifiers with control pulses at repetition frequencies in the 40–160-GHz range for use in ultrahigh-speed all-optical signal processing

Yoshiyasu Ueno, Shigeru Nakamura, and Kazuhito Tajima  »View Author Affiliations


JOSA B, Vol. 19, Issue 11, pp. 2573-2589 (2002)
http://dx.doi.org/10.1364/JOSAB.19.002573


View Full Text Article

Acrobat PDF (646 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In a semiconductor optical amplifier (SOA) with copropagating optical pump pulses, the application of a nonlinear phase shift to optical signals provides the driving force for all-optical interferometric switching. We study, both analytically and experimentally, the dependencies of the nonlinear phase shift on the driving frequency (42–168 GHz) and on the SOA parameters. We have found that the nonlinear phase shift (ΔΦNL) decreases with the driving frequency but that this decrease is only linear, i.e., ΔΦNL∝f−1. We have also found that the nonlinear phase shift in the SOA linearly increases with the injection current (Iop), i.e., ΔΦNL∝Iop, even in this ultrahigh-frequency range.

© 2002 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.7080) Ultrafast optics : Ultrafast devices
(320.7160) Ultrafast optics : Ultrafast technology

Citation
Yoshiyasu Ueno, Shigeru Nakamura, and Kazuhito Tajima, "Nonlinear phase shifts induced by semiconductor optical amplifiers with control pulses at repetition frequencies in the 40–160-GHz range for use in ultrahigh-speed all-optical signal processing," J. Opt. Soc. Am. B 19, 2573-2589 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-11-2573


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. N. Bloembergen, Nonlinear Optics (Benjamin, New York, 1965; reprinted by Addison-Wesley, Redwood, Calif., 1992).
  2. A. Villeneuve, K. Al-Hemyari, J. U. Kang, C. N. Ironside, J. S. Aitchison, and G. I. Stegeman, “Demonstration of all-optical demultiplexing at 1555 nm with an AlGaAs directional coupler,” Electron. Lett. 29, 721–722 (1993).
  3. K. Tajima, “All-optical switch with switch-off time unrestricted by carrier lifetime,” Jpn. J. Appl. Phys., 32, L1746–L1749 (1993).
  4. S. Nakamura, K. Tajima, and Y. Sugimoto, “Experimental investigation on high-speed switching characteristics of a novel symmetric Mach–Zehnder all-optical switch,” Appl. Phys. Lett. 65, 283–285 (1994).
  5. J. P. Sokoloff, P. R. Prucnal, I. Glesk, and M. Kane, “A teraherz optical asymmetric demultiplexer (TOAD),” IEEE Photon. Technol. Lett. 5, 787–790 (1993).
  6. S. Nakamura, Y. Ueno, and K. Tajima, “Ultrafast (200-fs switching, 1.5-Tb/s demultiplexing) and high-repetition (10 GHz) operations of a polarization-discriminating symmetric Mach–Zehnder all-optical switch,” IEEE Photon. Technol. Lett. 10, 1575–1577 (1998).
  7. S. Nakamura, K. Tajima, and Y. Sugimoto, “Cross-correlation measurement of ultrafast switching in a symmetric Mach–Zehnder all-optical switch,” Appl. Phys. Lett. 67, 2445–2447 (1995).
  8. S. Nakamura, Y. Ueno, and K. Tajima, “Femtosecond switching with semiconductor optical amplifier-based symmetric-Mach–Zehnder all-optical switch,” in technical digest of the 6th International Workshop on Femtosecond Technology, Makuhari, Japan, July 13–15, 1999.
  9. K. Tajima, S. Nakamura, Y. Ueno, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Hybrid integrated symmetric Mach–Zehnder all-optical switch with ultrafast, high extinction switching,” Electron. Lett. 35, 2030–2031 (1999).
  10. S. Nakamura, Y. Ueno, K. Tajima, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, M. Itoh, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Demultiplexing of 168-Gb/s data pulses with a hybrid-integrated symmetric Mach–Zehnder all-optical switch,” IEEE Photon. Technol. Lett. 12, 425–427 (2000).
  11. K. Tajima, S. Nakamura, Y. Ueno, J. Sasaki, T. Sugimoto, T. Kato, T. Shimoda, H. Hatakeyama, T. Tamanuki, and T. Sasaki, “Ultrafast hybrid-integrated symmetric Mach–Zehnder all-optical switch and its 168 Gbps error-free demultiplexing operation,” IEICE Trans. Electron. E83-C, 959–965 (2000).
  12. B. Mikkelsen, K. S. Jepsen, M. Vaa, H. N. Poulsen, K. E. Stubkjaer, R. Hess, M. Duelk, W. Vogt, E. Gamper, E. Gini, P. A. Besse, H. Melchior, S. Bouchoule, and F. Devaux, “All-optical wavelength converter scheme for high speed RZ signal formats,” Electron. Lett. 33, 2137–2139 (1997).
  13. Y. Ueno, S. Nakamura, K. Tajima, and S. Kitamura, “3.8-THz wavelength conversion of picosecond pulses using a semiconductor delayed-interference signal-wavelength converter (DISC),” IEEE Photon. Technol. Lett. 10, 346–348 (1998).
  14. L. Billes, J. C. Simon, B. Kowalski, M. Henry, G. Michaud, P. Lamouler, and F. Alard, “20 Gbit/s optical 3R regenerator using SOA based Mach–Zehnder interferometer gate,” in technical digest of the 23rd European Conference on Optical Communications (ECOC ’97), Edinburgh, Scotland, September 22–25, 1997.
  15. D. Cotter and A. Ellis, “Asynchronous digital optical regeneration and networks,” J. Lightwave Technol. 16, 2068–2080 (1998).
  16. Y. Ueno, S. Nakamura, and K. Tajima, “Record low-power all-optical semiconductor switch operation at ultrafast repetition rates above the carrier cutoff frequency,” Opt. Lett. 23, 1846–1848 (1998).
  17. Y. Ueno, S. Nakamura, and K. Tajima, “Spectral phase-locking in ultrafast all-optical Mach–Zehnder-type semiconductor wavelength converters,” Jpn. J. Appl. Phys. 38, L1243–L1245 (1999).
  18. St. Fisher, M. Duelk, M. Puleo, R. Girardi, E. Gamper, W. Vogt, W. Hunziker, E. Gini, and H. Melchior, “40-Gb/s OTDM to 4×10 Gb/s WDM conversion in a monolithic InP Mach–Zehnder interferometer module,” IEEE Photon. Technol. Lett. 11, 1262–1264 (1999).
  19. C. Janz, B. Dagens, J.-Y. Emergy, M. Renaud, and B. Lavigne, “Integrated SOA-based interferometers for all-optical signal processing,” in technical digest of the 26th European Conference on Optical Communications (ECOC 2000), Munich, Germany, September 3–7, 2000.
  20. K. L. Hall and K. A. Rauschenbach, Opt. Lett. 23, 1271–1273 (1998).
  21. S. Nakamura, Y. Ueno, and K. Tajima, “Error-free all-optical data pulse regeneration at 84 Gbps and wavelength conversion at 168 Gbps with symmetric Mach–Zehnder all-optical switches,” in technical digest of the Meeting on Optical Amplifiers and Their Applications (OAA 2000), Quebec, Canada, July 9–12, 2000.
  22. Y. Ueno, S. Nakamura, and K. Tajima, “Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s by using a symmetric–Mach-Zehnder-type semiconductor regenerator,” IEEE Photon. Technol. Lett. 13, 469–471 (2001).
  23. A. E. Kelly, I. D. Phillips, R. J. Manning, A. D. Ellis, D. Nesset, D. G. Moodie, and R. Kashyap, “80 Gb/s all-optical regenerative wavelength conversion using semiconductor optical amplifier based interferometer,” Electron. Lett. 35, 1477–1478 (1999).
  24. Y. Ueno, S. Nakamura, H. Hatakeyama, T. Tamanuki, T. Sasaki, and K. Tajima, “168-Gb/s OTDM wavelength conversion using an all-optical SMZ-type switch,” in technical digest of the 26th European Conference on Optical Communications (ECOC 2000), Munich, Germany, Sept. 3–7, 2000.
  25. S. Nakamura, Y. Ueno, and K. Tajima, “168-Gbit/s all-optical wavelength conversion with a symmetric Mach–Zehnder-type switch,” IEEE Photon. Technol. Lett. 13, 1091–1093 (2001).
  26. T. Durhuus, B. Mikkelsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Lightwave Technol. 14, 942–954 (1996).
  27. C. Joergensen, S. L. Danielsen, K. E. Stubkjaer, M. Schilling, K. Daub, P. Doussiere, F. Pommerau, P. B. Hansen, H. N. Pulsen, A. Kloch, M. Vaa, B. Mikkelsen, E. Lach, G. Laube, W. Idler, and K. Wunstel, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3, 1168–1179 (1997).
  28. B. Mikkelsen, S. L. Danielsen, C. Joergensen, R. J. S. Pedersen, H. N. Poulsen, and K. E. Stubkjaer, “All-optical noise reduction capability of interferometric wavelength converters,” Electron. Lett. 32, 566–567 (1996).
  29. R. J. Manning, A. D. Ellis, A. J. Poustie, and K. J. Blow, “Semiconductor laser amplifiers for ultrafast all-optical signal processing,” J. Opt. Soc. Am. B 14, 3204–3216 (1997).
  30. K. Tajima, S. Nakamura, and Y. Sugimoto, “Ultrafast polarization-discriminating Mach–Zehnder all-optical switch,” Appl. Phys. Lett. 67, 3709–3711 (1995).
  31. C. T. Hultgren and E. P. Ippen, “Ultrafast refractive index dynamics in AlGaAs diode laser amplifiers,” Appl. Phys. Lett. 59, 635–637 (1991).
  32. Y. Ueno, S. Nakamura, K. Tajima, and S. Ishikawa, “Effect of spectral hole burning on symmetric Mach–Zehnder all-optical switch,” in technical digest of the 4th International Workshop on Femtosecond Technology, Tsukuba, Japan, February 13–14, 1997.
  33. S. Nakamura, Y. Ueno, and K. Tajima, “Femtosecond switching with semiconductor-optical-amplifier-based symmetric Mach–Zehnder-type all-optical switch,” Appl. Phys. Lett. 78, 3929–3931 (2001).
  34. A. E. Siegman, “Pulse amplification with homogeneous gain saturation,” in Lasers, A. Kelly, ed. (University Science, Orlando, Fla., 1986), Chap. 10.
  35. Y. Ueno, S. Nakamura, and K. Tajima, “Ultrafast 168 GHz 1.5 ps 1 fJ symmetric-Mach–Zehnder-type all-optical semiconductor switch,” Jpn. J. Appl. Phys. 39, L806–L808 (2000).
  36. R. Manning and D. A. O. Davies, “Three-wavelength device for all-optical signal processing,” Opt. Lett. 19, 889–891 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited