Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Influence of classical pump noise on long-pulse multiorder stimulated Raman scattering in optical fiber

Not Accessible

Your library or personal account may give you access

Abstract

We present a combined experimental and theoretical study of the effect of pump pulse noise on the growth and statistics of multiorder stimulated Raman scattering in optical fiber. Because of the intensity dependence of stimulated Raman scattering, fluctuations in the detailed temporal structure of the pump pulse amplitude strongly affect the growth and statistics of the Stokes orders, even when dispersive effects are not important. By comparing experimental results with a detailed model including the frequency dependence of the Raman gain and the pump pulse temporal structure, we show that the pump pulse temporal fluctuations play a pivotal role in determining the growth and pulse energy statistics of the Stokes orders.

© 2002 Optical Society of America

Full Article  |  PDF Article
More Like This
Increased Stokes pulse energy variation from amplified classical noise in a fiber Raman generator

Arkadiusz Betlej, Peter Schmitt, Panagiotis Sidereas, Ryan Tracy, Christopher G. Goedde, and John R. Thompson
Opt. Express 13(8) 2948-2960 (2005)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved