OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 12 — Dec. 2, 2002
  • pp: 2863–2866

Phase control of the probe gain without population inversion in a four-level V model

Jin-Hui Wu and Jin-Yue Gao  »View Author Affiliations

JOSA B, Vol. 19, Issue 12, pp. 2863-2866 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (132 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a new scheme for achieving inversionless gain that depends on both an internal interference effect and external coherent fields. We have found that, owing to the quantum interference effect that originates from spontaneous emissions from two closely lying levels, large inversionless gains can be achieved under appropriate conditions. In particular, in addition to the amplitudes, the phases of the applied fields also affect inversionless gain remarkably. That is to say, we can use the relative phase between two intense fields to control probe gain without inversion.

© 2002 Optical Society of America

OCIS Codes
(270.1670) Quantum optics : Coherent optical effects
(270.6620) Quantum optics : Strong-field processes

Jin-Hui Wu and Jin-Yue Gao, "Phase control of the probe gain without population inversion in a four-level V model," J. Opt. Soc. Am. B 19, 2863-2866 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. A. Ansari, J. Gea-Banacloche, and M. S. Zubairy, “Phase-sensitive amplification in a three-level atomic system,” Phys. Rev. A 41, 5179–5186 (1990). [CrossRef] [PubMed]
  2. M. A. G. Martinez, P. R. Herezfeld, C. Samuels, L. M. Narducci, and C. H. Keitel, “Quantum interference effects in spontaneous atomic emission: dependence of the resonance fluorescence spectrum on the phase of the driving field,” Phys. Rev. A 55, 4483–4491 (1997). [CrossRef]
  3. S. Y. Zhu, H. Chen, and H. Huang, “Quantum interference effects in spontaneous emission from an atom embedded in a photonic band gap structure,” Phys. Rev. Lett. 79, 205–208 (1997). [CrossRef]
  4. S. Menon and G. S. Agarwal, “Effects of spontaneously generated coherence on the pump–probe response of a Λ system,” Phys. Rev. A 57, 4014–4018 (1998). [CrossRef]
  5. E. Paspalakis and P. L. Knight, “Phase control of spontaneous emission,” Phys. Rev. Lett. 81, 293–296 (1998). [CrossRef]
  6. P. Zhou and S. Swain, “Phase-dependent spectra in a driven two-level atom,” Phys. Rev. Lett. 82, 2500–2504 (1999). [CrossRef]
  7. F. Ghafoor, S. Y. Zhu, and M. S. Zubairy, “Amplitude and phase control of spontaneous emission,” Phys. Rev. A 62, 013811 (2000). [CrossRef]
  8. E. Paspalakis, S. Q. Gong, and P. L. Knight, “Spontaneous emission-induced coherent effects in absorption and dispersion of a V-type three-level atom,” Opt. Commun. 152, 293–298 (1998). [CrossRef]
  9. J. Javanainen, “Effect of state superpositions created by spontaneous emission on laser-driven transitions,” Europhys. Lett. 17, 407–412 (1992). [CrossRef]
  10. S. E. Harris, “Lasers without inversion: interference of lifetime-broadened resonances,” Phys. Rev. Lett. 62, 1033–1036 (1989). [CrossRef] [PubMed]
  11. M. O. Scully, S. Y. Zhu, and A. Gavrielides, “Degenerate quantum-beat laser: lasing without inversion and inversion without lasing,” Phys. Rev. Lett. 62, 2813–2816 (1989). [CrossRef] [PubMed]
  12. A. Imamoglu, J. E. Field, and S. E. Harris, “Lasers without inversion: a closed lifetime broadened system,” Phys. Rev. Lett. 66, 1154–1156 (1991). [CrossRef]
  13. A. Nottelmann, C. Peters, and W. Lange, “Inversionless amplification of picosecond pulses due to Zeeman coherence,” Phys. Rev. Lett. 70, 1783–1786 (1993). [CrossRef] [PubMed]
  14. C. H. Keitel, O. Kocharovskya, L. M. Narducci, M. O. Scully, S. Y. Zhu, and H. M. Doss, “Two mechanisms for inversionless amplification in four-level atoms with Raman pumping,” Phys. Rev. A 48, 3196–3202 (1993). [CrossRef] [PubMed]
  15. Y. F. Zhu, “Light amplification mechanisms in a coherently coupled atomic system,” Phys. Rev. A 55, 4568–4575 (1997). [CrossRef]
  16. S. Y. Zhu, D. Z. Wang, and J. Y. Gao, “Nonlinear theory of noninversion lasers of an open three-level system,” Phys. Rev. A 55, 1339–1345 (1997). [CrossRef]
  17. J. Y. Gao, C. Guo, X. Z. Guo, G. X. Jin, P. W. Wang, J. Zhao, H. Z. Zhang, Y. Jiang, D. Z. Wang, and D. M. Jiang, “Observation of light amplification without population inversion in sodium,” Opt. Commun. 93, 323–327 (1992). [CrossRef]
  18. H. M. Doss, L. M. Narducci, M. O. Scully, and J. Y. Gao, “Theoretical analysis of a four-level laser without inversion driven by a pulsed Raman field,” Opt. Commun. 95, 57–63 (1993). [CrossRef]
  19. A. S. Zibrov, M. D. Lukin, D. E. Nikonov, L. Hollberg, M. O. Scully, V. L. Velichansky, and H. G. Robinson, “Experimental demonstration of laser oscillation without population inversion via quantum interference in Rb,” Phys. Rev. Lett. 75, 1499–1502 (1995). [CrossRef] [PubMed]
  20. M. Fleischhauer, C. H. Keitel, L. M. Narducci, M. O. Scully, S. Y. Zhu, and M. S. Zubairy, “Lasing without inversion: interference of radiatively broadened resonances in dressed atomic systems,” Opt. Commun. 94, 599–608 (1992). [CrossRef]
  21. P. Zhou and S. Swain, “Ultranarrow spectral lines via quantum interference,” Phys. Rev. Lett. 77, 3995–3998 (1996). [CrossRef] [PubMed]
  22. P. Zhou and S. Swain, “Quantum interference in probe absorption: narrow resonances, transparency, and gain without population inversion,” Phys. Rev. Lett. 78, 832–835 (1997). [CrossRef]
  23. H. R. Xia, C. Y. Ye, and S. Y. Zhu, “Experimental observation of spontaneous emission cancellation,” Phys. Rev. Lett. 77, 1032–1037 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited