OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 12 — Dec. 2, 2002
  • pp: 2867–2875

Analysis of general geometric scaling perturbations in a transmitting waveguide: fundamental connection between polarization-mode dispersion and group-velocity dispersion

Maksim Skorobogatiy, Mihai Ibanescu, Steven G. Johnson, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, and Yoel Fink  »View Author Affiliations


JOSA B, Vol. 19, Issue 12, pp. 2867-2875 (2002)
http://dx.doi.org/10.1364/JOSAB.19.002867


View Full Text Article

Enhanced HTML    Acrobat PDF (425 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop a novel perturbation theory formulation to evaluate polarization-mode dispersion (PMD) for a general class of scaling perturbations of a waveguide profile based on generalized Hermitian Hamiltonian formulation of Maxwell’s equations. Such perturbations include elipticity and uniform scaling of a fiber cross section, as well as changes in the horizontal or vertical sizes of a planar waveguide. Our theory is valid even for discontinuous high-index contrast variations of the refractive index across a waveguide cross section. We establish that, if at some frequencies a particular mode behaves like pure TE or TM polarized mode (polarization is judged by the relative amounts of the electric and magnetic longitudinal energies in the waveguide cross section), then at such frequencies for fibers under elliptical deformation its PMD as defined by an intermode dispersion parameter τ becomes proportional to group-velocity dispersion D such that τ=λδ|D|, where δ is a measure of the fiber elipticity and λ is a wavelength of operation. As an example, we investigate a relation between PMD and group-velocity dispersion of a multiple-core step-index fiber as a function of the core–clad index contrast. We establish that in this case the positions of the maximum PMD and maximum absolute value of group-velocity dispersion are strongly correlated, with the ratio of PMD to group-velocity dispersion being proportional to the core–clad dielectric contrast.

© 2002 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties

Citation
Maksim Skorobogatiy, Mihai Ibanescu, Steven G. Johnson, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, and Yoel Fink, "Analysis of general geometric scaling perturbations in a transmitting waveguide: fundamental connection between polarization-mode dispersion and group-velocity dispersion," J. Opt. Soc. Am. B 19, 2867-2875 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-12-2867

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited