OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 12 — Dec. 2, 2002
  • pp: 2927–2937

Measurements of the spectroscopic and energy transfer parameters for Er3+-doped and Er3+, Pr3+-codoped PbO–Bi2O3–Ga2O3 glasses

Daniel J. Coleman, Stuart D. Jackson, Paul Golding, and Terence A. King  »View Author Affiliations

JOSA B, Vol. 19, Issue 12, pp. 2927-2937 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (226 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Measurements of the absorption and emission spectra and the characteristics of the luminescent decay of the  4I11/2 and  4I13/2 energy levels of Er3+ are presented for Er3+ singly doped and Er3+,Pr3+-codoped PbOBi2O3Ga2O3 (PBG) glasses. The absorption cross sections were determined after accurate measurement both of glass component concentrations by use of electron probe analysis and of glass density. The characteristics of the luminescent decays were determined after direct pumping of the  4I11/2 and  4I13/2 energy levels of singly doped Er3+ PBG glass with a tunable pulsed optical parametric oscillator for calculation of the macroscopic rate parameters (WETU) for energy transfer upconversion (ETU) for these energy levels. The values for WETU relevant to the  4I11/2 energy level were measured to be greater than the WETU values relevant to the  4I13/2 energy level within the range of Er3+ concentrations studied. The macroscopic rate parameter (WEr-Pr) for energy transfer to the Pr3+ deactivator ion from the  4I13/2 energy level was also determined for a range of Pr3+ concentrations and for two fixed Er3+ concentrations. From a measurement of the energy-level lifetimes it was established that the rate of energy transfer from the  4I13/2 energy level to Pr3+ is greater than the corresponding rate of energy transfer from the  4I11/2 level to both the Pr3+ ion and the OH impurity. The overall results suggest that, to maximize the population inversion on the  4I11/24I13/23 µm transition, deactivation of the  4I13/2 level by way of small amounts of Pr3+ will be effective.

© 2002 Optical Society of America

OCIS Codes
(060.2290) Fiber optics and optical communications : Fiber materials
(140.3510) Lasers and laser optics : Lasers, fiber
(160.5690) Materials : Rare-earth-doped materials
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

Daniel J. Coleman, Stuart D. Jackson, Paul Golding, and Terence A. King, "Measurements of the spectroscopic and energy transfer parameters for Er3+-doped and Er3+, Pr3+-codoped PbO–Bi2O3–Ga2O3 glasses," J. Opt. Soc. Am. B 19, 2927-2937 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. H. Dumbaugh, “Lead bismuthate glasses,” Phys. Chem. Glasses 19, 121–125 (1978).
  2. W. H. Dumbaugh, “Heavy metal oxide glasses containing Bi2O3,” Phys. Chem. Glasses 27, 119–123 (1986).
  3. W. H. Dumbaugh and J. C. Lapp, “Heavy-metal oxide glasses,” J. Am. Ceram. Soc. 75, 2315–2325 (1992). [CrossRef]
  4. J. Heo, Y. B. Shin, and J. N. Jang, “Spectroscopic analysis of Tm3+ in PbO–Bi2O3–Ga2O3 glass,” Appl. Opt. 34, 4284–4289 (1995). [CrossRef] [PubMed]
  5. Y. B. Shin, J. N. Jang, and J. Heo, “Mid-infrared light emission characteristics of Ho3+-doped chalcogenide and heavy-metal oxide glasses,” Opt. Quantum Electron. 27, 379–386 (1995). [CrossRef]
  6. H. Takebe, K. Yoshino, T. Murata, K. Morinaga, J. Hector, W. S. Brocklesby, D. W. Hewak, J. Wang, and D. N. Payne, “Spectroscopic properties of Nd3+ and Pr3+ in gallate glasses with low phonon energies,” Appl. Opt. 36, 5839–5843 (1997). [CrossRef] [PubMed]
  7. Y. G. Choi and J. Heo, “1.3-μm emission and multiphonon relaxation phenomena in PbO–Bi2O3–Ga2O3 glasses doped with rare-earths,” J. Non-Cryst. Solids 217, 199–207 (1997). [CrossRef]
  8. Y. G. Choi and J. Heo, “Influence of OH and Nd3+ concentrations on the lifetimes of the Nd3+:4F3/2 level in PbO–Bi2O3–Ga2O3 glasses,” Phys. Chem. Glasses 39, 311–317 (1998).
  9. Y. G. Choi, K. H. Kim, and J. Heo, “Spectroscopic properties of and energy transfer in PbO–Bi2O3Ga2O3 glass doped with Er2O3,” J. Am. Ceram. Soc. 82, 2762–2768 (1999). [CrossRef]
  10. F. Miyaji and S. Sakka, “Structure of PbO–Bi2O3–Ga2O3 glasses,” J. Non-Cryst. Solids 134, 77–85 (1991). [CrossRef]
  11. M. Janewicz, J. Wasylak, and E. Czerwosz, “Raman investigation of PbO–BiO1.5-GaO1.5 glasses,” Phys. Chem. Glasses 353, 169–173 (1994).
  12. A. A. Kharlamov, R. M. Almeide, and J. Heo, “Vibrationalspectra and structure of heavy metal oxide glasses,” J. Non-Cryst. Solids 202, 233–240 (1996). [CrossRef]
  13. J. C. Lapp and W. H. Dumbaugh, “Gallium oxide glasses,” Key Eng. Mater. 94–95, 257–178 (1994). [CrossRef]
  14. D. W. Hall, M. A. Newhouse, N. F. Borrelli, W. H. Dumbaugh, and D. L. Weidman, “Nonlinear optical susceptibilities of high-index glasses,” Appl. Phys. Lett. 54, 1293–1295 (1989). [CrossRef]
  15. S. D. Jackson, T. A. King, and M. Pollnau, “Diode pumped 1.7-W erbium fiber laser,” Opt. Lett. 24, 1133–1134 (1999). [CrossRef]
  16. B. Srinivasan, J. Tafoya, and R. K. Jain, “High-power ‘watt-level’ cw operation of diode-pumped 2.7 μm fiber lasers using efficient cross-relaxation and energy transfer mechanisms,” Opt. Express 4, 490–495 (1999). [CrossRef] [PubMed]
  17. J. S. Wang, D. P. Machewirth, F. Wu, E. Snitzer, and E. M. Vogel, “Neodymium-doped tellurite single-mode fiber laser,” Opt. Lett. 19, 1448–1449 (1994). [CrossRef] [PubMed]
  18. A. Mori, Y. Ohishi, and S. Sudo, “Erbium-doped tellurite glass fiber laser and amplifier,” Electron. Lett. 33, 863–864 (1997). [CrossRef]
  19. J. S. Wang, E. Snitzer, E. M. Vogel, and G. H. Sigel, Jr., “1.47, 1.88 and 2.8 μm emissions of Tm3+ and Tm3+–Ho3+-codoped tellurite glasses,” J. Lumin. 60–61, 145–149 (1994). [CrossRef]
  20. Y. B. Shin, H. T. Lim, Y. G. Choi, Y. S. Kim, and J. Heo, “2.0 μm emission properties and energy transfer between Ho3+ and Tm3+ in PbO–Bi2O3–Ga2O3 glasses,” J. Am. Ceram. Soc. 83, 787–791 (2000). [CrossRef]
  21. M. C. Pierce, S. D. Jackson, M. R. Dickinson, T. A. King, and P. Sloan, “Laser-tissue interaction with continuous wave 3 μm fiber laser: preliminary studies with soft tissue,” Lasers Surg. Med. 26, 491–495 (2000). [CrossRef]
  22. H. Lin, L. W. Decent, D. E. Day, and J. O. Stoffer, “IR transmission and corrosion of lead-bismuth gallate glasses,” J. Non-Cryst. Solids 171, 299–303 (1994). [CrossRef]
  23. P. S. Golding, S. D. Jackson, T. A. King, and M. Pollnau, “Energy transfer processes in Er3+-doped and Er3+, Pr3+-codoped ZBLAN glasses,” Phys. Rev. B 62, 856–864 (2000). [CrossRef]
  24. D. Coleman, P. Golding, T. A. King, and S. D. Jackson, “Spectroscopic and energy transfer parameters for Er3+-doped and Er3+, Pr3+-codoped GeGaS glasses,” J. Opt. Soc. Am. B 17, 1982–1989 (2002). [CrossRef]
  25. M. Pollnau, Th. Graf, J. E. Balmer, W. Luthy, and H. P. Weber, “Explanation of the cw operation of the Er3+ 3-μm crystal laser,” Phys. Rev. A 49, 3990–3996 (1994). [CrossRef] [PubMed]
  26. V. Lupei, S. Georgesecu, and V. Florea, “On the dynamics of population inversion for 3 μm Er3+ lasers,” IEEE J. Quantum Electron. 29, 426–434 (1993). [CrossRef]
  27. V. K. Bogdanov, W. E. K. Gibbs, D. J. Booth, J. S. Javorniczky, P. J. Newman, and D. R. MacFarlane, “Energy exchange processes in Er3+-doped fluorozirconate glasses,” J. Non-Cryst. Solids 256&257, 288–293 (1999). [CrossRef]
  28. D. S. Knowles and H. P. Jenssen, “Upconversion versus Pr-deactivation for efficient 3 μm laser operation,” IEEE J. Quantum Electron. 28, 1197–1208 (1992). [CrossRef]
  29. R. S. Quimby, W. J. Miniscalco, and B. Thomson, “Excited state absorption in erbium doped glass,” in Fiber Laser Source and Amplifiers III, M. J. Digonnet and E. Snitzer, eds., Proc. SPIE 1581, 72–79 (1991). [CrossRef]
  30. D. S. Sumida and T. Y. Fan, “Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett. 19, 1343–1345 (1994). [CrossRef] [PubMed]
  31. P. W. France, “Extrinsic absorption,” in Fluoride Glass Optical Fibers, M. G. Drexhage, J. M. Parker, M. W. Moore, S. F. Carter, and J. W. Wright, eds. (CRC, Boca Raton, Fla., 1990), pp. 132–185.
  32. D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134, 299–306 (1964). [CrossRef]
  33. T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8-, 2.9-, and 4.3-μm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett. 21, 1594–1602 (1996). [CrossRef] [PubMed]
  34. W. J. Miniscalco and R. S. Quimby, “General procedure for the analysis of Er3+ cross sections,” Opt. Lett. 16, 258–260 (1991). [CrossRef] [PubMed]
  35. M. J. F. Digonnet, Rare Earth Doped Fiber Lasers and Amplifiers (Marcel Dekker, New York, 1993), pp. 462–472.
  36. J. B. Gruber, J. R. Quagliano, M. F. Reid, F. S. Richardson, M. E. Hills, M. D. Seltzer, S. B. Stevens, C. A. Morrison, and T. H. Allik, “Energy levels and correlation crystal-field effects in Er3+-doped garnets,” Phys. Rev. B 48, 15, 561–15, 573 (1993). [CrossRef]
  37. S. R. Luthi, H. U. Gudel, M. P. Hehlen, and J. R. Quagliano, “Electronic energy-level structure, correlation crystal-field effects, and f–f transition intensities of Er3+ in Cs3Lu2Cl9,” Phys. Rev. B 57, 15, 229–15, 241 (1998). [CrossRef]
  38. Y. D. Huang, M. Mortier, and F. Auzel, “Stark levels analysis for Er3+-doped oxide glasses: germanate and silicate,” Opt. Mater. 15, 243–260 (2001). [CrossRef]
  39. K. W. Kramer, H. U. Gudel, and R. N. Schwartz, “Infrared-to-visible upconversion in LaCl3:1%Er3+: energy-level and line-strength calculations,” Phys. Rev. B 56, 13, 830–13, 840 (1997). [CrossRef]
  40. Z. Mazurak and J. B. Gruber, “Energy levels and crystal field parameters of Nd3+ and Er3+ in LiRP4O12 single crystals,” J. Phys. Condens. Matter 4, 3453–3458 (1992). [CrossRef]
  41. M. Mortier, Y. D. Huang, and F. Auzel, “Crystal field analysis of Er3+-doped glasses: germanate, silicate and ZBLAN,” J. Alloys Compd. 300–301, 407–413 (2000). [CrossRef]
  42. D. A. Zubenko, M. A. Noginov, V. A. Smirnov, and I. A. Shcherbakov, “Different mechanisms of nonlinear quenching of luminescence,” Phys. Rev. B 55, 8881–8886 (1997). [CrossRef]
  43. V. Ostroumov, T. Jensen, J.-P. Meyn, G. Huber, and M. A. Noginov, “Study of luminescence concentration quenching and energy transfer upconversion in Nd-doped LaSc3(BO3)4 and GdVO4 laser crystals,” J. Opt. Soc. Am. B 15, 1052–1060 (1998). [CrossRef]
  44. R. Balda, J. Fernandez, M. Sanz, A. De Pablos, J. M. Fdez-Navarro, and J. Mugnier, “Laser spectroscopy of Nd3+ ions in GeO2–PbO–Bi2O3 glasses,” Phys. Rev. B 61, 3384–3390 (2000). [CrossRef]
  45. J. A. Cerri, I. M. G. Santos, E. Longo, E. R. Leite, R. M. Lebullenger, A. C. Heranades, and J. A. Varela, “Characteristics of PbO–GaO1.5–GaO1.5 glasses melted in SnO2 crucibles,” J. Am. Ceram. Soc. 81, 705–708 (1998). [CrossRef]
  46. W. H. Huang, C. S. Ray, and D. E. Day, “Color and selected properties of PbO–BiO1.5–GaO1.5 glasses,” J. Am. Ceram. Soc. 77, 1017–1024 (1994). [CrossRef]
  47. L. Zhang, H. Hu, and F. Lin, “Emission properties of highly doped Er3+ fluoroaluminate glass,” Mater. Lett. 47, 189–193 (2001). [CrossRef]
  48. C. C. Ye, D. W. Hewak, M. Hempstead, B. N. Samson, and D. N. Payne, “Spectral properties of Er3+-doped gallium lanthanum sulphide glass,” J. Non-Cryst. Solids 208, 56–63 (1996). [CrossRef]
  49. W. L. Barnes, R. I. Laming, E. J. Tarbox, and P. R. Morkel, “Absorption and emission cross section of Er3+ doped silica fibers,” IEEE J. Quantum Electron. 27, 1004–1010 (1991). [CrossRef]
  50. A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62, 6215–6227 (2000). [CrossRef]
  51. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Soc. 21, 836–850 (1953).
  52. A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, “Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses,” Phys. Rev. B 41, 5364–5371 (1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited