## Modified spontaneous-emission rate in an inverted-opal structure with complete photonic bandgap

JOSA B, Vol. 19, Issue 12, pp. 3013-3018 (2002)

http://dx.doi.org/10.1364/JOSAB.19.003013

Acrobat PDF (608 KB)

### Abstract

A finite three-dimensional photonic-crystal structure with a complete photonic bandgap is shown to drastically modify the spontaneous-emission rate of an embedded dipole. Calculations on the basis of the finite-difference time-domain method with perfectly matched layer boundary conditions demonstrate a strong position and polarization dependence of spontaneous emission within the unit cell. Strong enhancement effects are predicted at interfaces between the high-index and the low-index material. The inhibition of spontaneous emission within the bandgap is of the order of two magnitudes, even for relatively small crystallites.

© 2002 Optical Society of America

**OCIS Codes**

(020.5580) Atomic and molecular physics : Quantum electrodynamics

(270.5580) Quantum optics : Quantum electrodynamics

(290.4210) Scattering : Multiple scattering

**Citation**

Christian Hermann and Ortwin Hess, "Modified spontaneous-emission rate in an inverted-opal structure with complete photonic bandgap," J. Opt. Soc. Am. B **19**, 3013-3018 (2002)

http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-12-3013

Sort: Year | Journal | Reset

### References

- H. Chew, “Radiation and lifetimes of atoms inside dielectric particles,” Phys. Rev. A 38, 3410–3416 (1988).
- F. L. Kien, N. H. Quang, and K. Hakuta, “Spontaneous emission from an atom inside a dielectric sphere,” Opt. Commun. 178, 151–164 (2000).
- Y. Xu, R. K. Lee, and A. Yariv, “Finite-difference time-domain analysis of spontaneous emission in a microdisk cavity,” Phys. Rev. A 61, 033808 (2000).
- S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
- E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
- K. Busch and S. John, “Photonic band gap formation in certain self-organizing systems,” Phys. Rev. E 58, 3896–3908 (1998).
- J. E. G. J. Wijnhoven and W. L. Vos, “Preparation of photonic crystals made of air spheres in titania,” Science 281, 802–804 (1998).
- M. S. Thijssen, R. Sprik, J. E. G. J. Wijnhoven, M. Megens, T. Narayanan, A. Lagendijk, and W. L. Vos, “Inhibited light propagation and broad band reflection in photonic air-sphere crystals,” Phys. Rev. Lett. 83, 2730–2733 (1999).
- A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. van Driel, “Large-scale synthesis of a silicon photonic crystal with a three-dimensional bandgap near 1.5 micrometers,” Nature 405, 437–440 (2000).
- H. Miguez, F. Meseguer, C. Lopez, M. Holgado, G. Andreasen, A. Mifsud, and V. Forn, “Germanium FCC structure from a colloidal crystal template,” Langmuir 16, 4405–4408 (2000).
- Y. A. Vlasov, X.-Z. Bo, J. C. Sturm, and D. J. Norris, “On-chip natural assembly of silicon photonic bandgap crystals,” Nature 414, 289–293 (2001).
- H. P. Schriemer, H. M. van Driel, A. F. Koenderink, and W. L. Vos, “Modified spontaneous emission spectra of laser dye in inverse opal photonic crystals,” Phys. Rev. A 63, 011801 (2001).
- R. Sprik, B. A. van Tiggelen, and A. Lagendijk, “Optical emission in periodic dielectrics,” Europhys. Lett. 35, 265–270 (1996).
- G. Kweon and L. M. Lawandy, “Quantum electrodynamics in photonic crystals,” Opt. Commun. 118, 388–411 (1995).
- T. Suzuki and P. K. L. Yu, “Emission power of an electric dipole in the photonic band structure of the fcc lattice,” J. Opt. Soc. Am. B 12, 570–582 (1995).
- K. Busch, N. Vats, S. John, and B. C. Sanders, “Radiating dipoles in photonic crystals,” Phys. Rev. E 62, 4251–4260 (2000).
- V. Lousse, J.-P. Vigneron, X. Bouju, and J.-M. Vigoreux, “Atomic radiation rates in photonic crystals,” Phys. Rev. B 64, 201104(R) (2001).
- S. John and J. Wang, “Quantum electrodynamics near a photonic band gap: photon bound States and dressed atoms,” Phys. Rev. Lett. 64, 2418–2421 (1990).
- S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994).
- S. Y. Zhu, Y. Yang, H. Chen, H. Zheng, and M. S. Zubairy, “Spontaneous radiation and Lamb shift in three-dimensional photonic crystals,” Phys. Rev. Lett. 84, 2136–2139 (2000).
- N. Vats, S. John, and K. Busch, “Theory of fluorescence in photonic crystals,” Phys. Rev. A 65, 043808 (2002).
- Z. Y. Li, L. L. Lin, and Z. Q. Zhang, “Spontaneous emission from photonic crystals: full vectorial calculations,” Phys. Rev. Lett. 84, 4341–4344 (2000).
- Z. Y. Li and Y. Xia, “Optical photonic band gaps and the Lamb shift,” Phys. Rev. B 63, 121305(R) (2001).
- Z. Y. Li and Y. Xia, “Full vectorial model for quantum optics in three-dimensional photonic crystals,” Phys. Rev. A 63, 043817 (2001).
- J.-K. Hwang, H.-Y. Ryu, and Y.-H. Lee, “Spontaneous emission rate of an electric dipole in a general microcavity,” Phys. Rev. B 60, 4688–4695 (1999).
- Y. Xu, R. K. Lee, and A. Yariv, “Quantum analysis and the classical analysis of spontaneous emission in a microcavity,” Phys. Rev. A 61, 033807 (2000).
- R. K. Lee, Y. Xu, and A. Yariv, “Modified spontaneous emission from a two-dimensional photonic bandgap crystal slab,” J. Opt. Soc. Am. B 17, 1438–1442 (2000).
- K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).
- J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
- J. de Moerloose and D. de Zutter, “Poynting’s theorem for the finite-difference-time-domain method,” Microwave Opt. Technol. Lett. 8, 257–260 (1995).
- C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B 51, 16635–16642 (1995).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.