OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 12 — Dec. 2, 2002
  • pp: 3028–3041

Reflection and transmission of light in multilayers perturbed by picosecond strain pulse propagation

O. Matsuda and O. B. Wright  »View Author Affiliations

JOSA B, Vol. 19, Issue 12, pp. 3028-3041 (2002)

View Full Text Article

Acrobat PDF (239 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We derive analytical formulas for the modulation of the reflectance and transmittance of light normally incident on a multilayer thin-film structure whose refractive indices are perturbed by an ultrashort optical pulse. The formulas, expressed in compact form, should prove useful for analysis of a wide range of ultrashort time-scale experiments on multilayers as well as longer time-scale photoacoustic and photothermal experiments based on optical probing. We demonstrate our method by the analysis of the modulated reflectance variation of a SiO2/Cr structure in which picosecond acoustic pulses have been optically excited.

© 2002 Optical Society of America

OCIS Codes
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(230.4170) Optical devices : Multilayers
(300.6430) Spectroscopy : Spectroscopy, photothermal
(310.6860) Thin films : Thin films, optical properties
(310.6870) Thin films : Thin films, other properties
(320.7120) Ultrafast optics : Ultrafast phenomena

O. Matsuda and O. B. Wright, "Reflection and transmission of light in multilayers perturbed by picosecond strain pulse propagation," J. Opt. Soc. Am. B 19, 3028-3041 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B 34, 4129–4138 (1986).
  2. O. B. Wright and K. Kawashima, “Coherent phonon detection from ultrafast surface vibrations,” Phys. Rev. Lett. 69, 1668–1671 (1992).
  3. B. Perrin, B. Bonello, J. C. Jeannet, and E. Romatet, “Interferometric detection of hypersound waves in modulated structures,” Prog. Nat. Sci. Suppl. 6, S444–S448 (1996).
  4. D. H. Hurley and O. B. Wright, “Detection of ultrafast phenomena by use of a modified Sagnac interferometer,” Opt. Lett. 24, 1305–1307 (1999).
  5. W. Chen, Y. Lu, H. J. Maris, and G. Xiao, “Picosecond ultrasonic study of localized phonon surface modes in Al/Ag superlattices,” Phys. Rev. B 50, 14506–14515 (1994).
  6. P. Basséras, S. M. Gracewski, G. W. Wicks, and R. J. D. Miller, “Optical generation of high-frequency acoustic waves in GaAs/AlxGa1−xAs periodic multilayer structures,” J. Appl. Phys. 75, 2761–2767 (1994).
  7. A. Bartels, T. Dekorsy, and H. Kurz, “Coherent zone-folded longitudinal acoustic phonons in semiconductor superlattices: excitation and detection,” Phys. Rev. Lett. 82, 1044–1047 (1999).
  8. K. Mizoguchi, M. Hase, S. Nakashima, and M. Nakayama, “Observation of coherent folded acoustic phonons propagating in a GaAs/AlAs superlattice by two-color pump-probe spectroscopy,” Phys. Rev. B 60, 8262–8266 (1999).
  9. H. E. Elsayed-Ali and T. Juhasz, “Femtosecond time-resolved thermomodulation of thin gold films with different crystal structures,” Phys. Rev. B 47, 13599–13610 (1993).
  10. A. Miklós and A. Lörincz, “Transient thermoreflectance of thin metal films in the picosecond regime,” J. Appl. Phys. 63, 2391–2395 (1988).
  11. N. D. Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, and F. Vallée, “Nonequilibrium electron dynamics in noble metals,” Phys. Rev. B 61, 16956–16966 (2000).
  12. O. B. Wright and V. E. Gusev, “Ultrafast generation of acoustic waves in copper,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 331–338 (1995).
  13. O. B. Wright, “Ultrafast nonequilibrium stress generation in gold and silver,” Phys. Rev. B 49, 9985–9988 (1994).
  14. O. B. Wright, “Thickness and sound velocity measurement in thin transparent films with laser picosecond acoustics,” J. Appl. Phys. 71, 1617–1629 (1992).
  15. O. B. Wright, “Laser picosecond acoustics in double-layer transparent films,” Opt. Lett. 20, 632–634 (1995).
  16. V. E. Gusev, “Laser hypersonics in fundamental and applied research,” Acustica Suppl. 82, S37–S45 (1996).
  17. J. A. Moon and J. Tauc, “Interference effects in pump-probe spectroscopy of thin films,” J. Appl. Phys. 73, 4571–4578 (1993).
  18. V. K. Subashiev and A. A. Kukharskii, “The reflection coefficient of optically inhomogeneous solids,” Phys. Status Solidi 23, 447–452 (1967).
  19. D. E. Aspnes and A. Frova, “Influence of spatially dependent perturbations on modulated reflectance and absorption of solids,” Solid State Commun. 7, 155–159 (1969).
  20. R. Jacobsson, “Light reflection from films of continuously varying refractive index,” in Progress in Optics, E. Wolf, ed. (North-Holland, Amsterdam, 1965), Vol. 5, Chap. 5, pp. 247–286.
  21. R. L. Hartman, “Green dyadic calculation for inhomogeneous optical media,” J. Opt. Soc. Am. A 17, 1067–1076 (2000).
  22. G. Caviglia and A. Morro, “Reflection and transmission of electromagnetic waves in planarly stratified media,” Nuovo Cimento B 114, 885–901 (1999).
  23. G. Chen and C. L. Tien, “Internal reflection effects on transient photothermal reflectance,” J. Appl. Phys. 73, 3461–3466 (1993).
  24. C. A. Paddock and G. L. Eesley, “Transient thermoreflectance from metal films,” Opt. Lett. 11, 273–275 (1986).
  25. S. D. Brorson, A. Kazeroonian, J. S. Moodera, D. W. Face, T. K. Cheng, E. P. Ippen, M. S. Dresselhaus, and G. Dresselhaus, “Femtosecond room-temperature measurement of the electron-phonon coupling constant λ in metallic superconductors,” Phys. Rev. Lett. 64, 2172–2175 (1990).
  26. T. Q. Qiu and C. L. Tien, “Heat transfer mechanisms during short-pulse laser heating of metals,” J. Heat Transfer 115, 835–841 (1993).
  27. A. N. Smith, J. L. Hostetler, and P. M. Norris, “Nonequilibrium heating in metal films: an analytical and numerical analysis,” Numer. Heat Transfer, Part A 35, 859–873 (1999).
  28. J. Shah, Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (Springer, Heidelberg, Germany, 1996).
  29. R. Ziebold, T. Witte, M. Hübner, and R. G. Ulbrich, “Direct observation of Fermi-pressure-driven electron-hole plasma expansion in GaAs on a picosecond time scale,” Phys. Rev. B 61, 16610–16618 (2000).
  30. H. G. Walther, E. Welsch, and J. Opfermann, “Calculation and measurement of the absorption in multilayer films by means of photoacoustics,” Thin Solid Films 142, 27–35 (1986).
  31. T. Elperin and G. Rudin, “Thermoelasticity problem for a multilayer coating-substrate assembly irradiated by a laser beam,” Int. Commun. Heat Mass Transfer 23, 133–142 (1996).
  32. H. Hu, X. Wang, and X. Xu, “Generalized theory of the photoacoustic effect in a multilayer material,” J. Appl. Phys. 86, 3953–3958 (1999).
  33. J. A. Batista, A. M. Mansanares, E. C. da Silva, C. C. Vaz, and L. C. M. Miranda, “Contrast enhancement in the detection of defects in transparent layered structures: the use of optothermal interference technique in solar cell investigation,” J. Appl. Phys. 88, 5079–5086 (2000).
  34. F. Abelès, “Optics of thin films,” in Advanced Optical Techniques, A. C. S. V. Heel, ed. (Wiley, New York, 1967), Chap. 5, pp. 143–188.
  35. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, UK, 1999).
  36. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Boston, 1998).
  37. D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 79th ed. (CRC Press, Boca Raton, Fla., 1998).
  38. G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants, 16th ed. (Longmans, London, 1995).
  39. T. Saito, O. Matsuda, and O. B. Wright, “Ultrafast acoustic phonon pulse generation in chromium,” Physica B 316–317, 304–307 (2002).
  40. R. W. Dixon, “Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners,” J. Appl. Phys. 38, 5149–5153 (1967).
  41. O. L. Anderson, “Determination and some uses of isotropic elastic constants of polycrystalline aggregates using single-crystal data,” in Physical Acoustics, W. P. Mason, ed. (Academic, New York, 1965), Vol. 3B, Chap. 2, pp. 43–95.
  42. J. F. Nye, Physical Properties of Crystals (Oxford U. Press, Oxford, UK, 1957).
  43. B. A. Auld, Acoustic Fields and Waves in Solids, 2nd ed. (Krieger, Malabar, Fla., 1990).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited