Spatiotemporal behavior of periodic arrays of spatial solitons in a planar waveguide with relaxing Kerr nonlinearity
JOSA B, Vol. 19, Issue 3, pp. 574-585 (2002)
http://dx.doi.org/10.1364/JOSAB.19.000574
Acrobat PDF (977 KB)
Abstract
We report picosecond pulsed experiments and numerical simulations of spatially induced modulational instability, which we used to form stable periodic arrays of bright soliton beams in a planar Kerr-like CS_{2} waveguide. We have found that the generation stage of these arrays is accurately described by the usual nonlinear Schrödinger wave equation, whereas the temporal dynamics of the nonlinearity is beneficial for subsequent stable propagation of the soliton arrays. In the picosecond regime the finite molecular relaxation time of the reorientational nonlinear index inhibits the Fermi–Pasta–Ulam recurrence predicted for an instantaneous Kerr nonlinearity. Moreover, the inhibition is associated with a novel spatiotemporal dynamics confirmed by numeric and streak-camera recordings.
© 2002 Optical Society of America
OCIS Codes
(190.3100) Nonlinear optics : Instabilities and chaos
(190.3270) Nonlinear optics : Kerr effect
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
Citation
Cyril Cambournac, Hervé Maillotte, Eric Lantz, John M. Dudley, and Mathieu Chauvet, "Spatiotemporal behavior of periodic arrays of spatial solitons in a planar waveguide with relaxing Kerr nonlinearity," J. Opt. Soc. Am. B 19, 574-585 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-3-574
Sort: Year | Journal | Reset
References
- N. N. Akhmediev, “Spatial solitons in Kerr and Kerr-like media,” Opt. Quantum Electron. 30, 535–569 (1998).
- G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518–1523 (1999).
- E. Garmire, R. Y. Chiao, and C. H. Townes, “Dynamics and characteristics of the self-trapping of intense light beams,” Phys. Rev. Lett. 19, 347–349 (1966).
- V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Sov. Phys. JETP 34, 62–69 (1972).
- A. Hasegawa and W. F. Brinkman, “Tunable coherent IR and FIR sources utilizing modulational instability,” IEEE J. Quantum Electron. QE-16, 694–697 (1980).
- A. Hasegawa, “Generation of a train of soliton pulses by induced modulational instability in optical fibers,” Opt. Lett. 9, 288–290 (1984).
- K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135–138 (1986).
- V. I. Bespalov and V. I. Talanov, “Filamentary structure of light beams in nonlinear liquids,” JETP Lett. 3, 307–310 (1966).
- V. E. Zakharov and A. M. Rubenchik, “Instability of waveguides and solitons in nonlinear media,” Sov. Phys. JETP 38, 494–500 (1974).
- A. Barthélémy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linéarité optique de Kerr,” Opt. Commun. 55, 201–206 (1985).
- H. Maillotte, J. Monneret, A. Barthélémy, and C. Froehly, “Laser beam self-splitting into solitons by optical Kerr nonlinearity,” Opt. Commun. 109, 265–271 (1994).
- H. Maillotte and R. Grasser, “Generation and propagation of stable periodic arrays of soliton stripes in a bulk Kerr liquid,” in Nonlinear Guided Waves and Their Applications, Vol. 5 of 1998 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1998), pp. 167–169.
- M. Soljacic, S. Sears, and M. Segev, “Self-trapping of necklace beams in self-focusing Kerr media,” Phys. Rev. Lett. 81, 4851–4854 (1998).
- C. Anastassiou, M. Soljacic, M. Segev, E. D. Eugenieva, D. N. Christodoulides, D. Kip, Z. H. Musslimani, and J. P. Torres, “Eliminating the transverse instabilities of Kerr solitons,” Phys. Rev. Lett. 85, 4888–4891 (2000).
- K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, “Generation of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulational instability,” Appl. Phys. Lett. 49, 236–238 (1986).
- G. Millot, E. Seve, S. Wabnitz, and M. Haelterman, “Observation of induced modulation polarization instabilities and pulse-train generation in the normal-dispersion regime of a birefringent optical fiber,” J. Opt. Soc. Am. B 15, 1266–1277 (1998).
- E. Seve, G. Millot, S. Wabnitz, T. Sylvestre, and H. Maillotte, “Generation of vector dark-soliton trains by induced modulation instability in a highly birefringent fiber,” J. Opt. Soc. Am. B 16, 1642–1650 (1999).
- M. Nakazawa, A. Suzuki, and H. A. Haus, “The modulational instability laser. I. Experiment,” IEEE J. Quantum Electron. 25, 2036–2044 (1989).
- M. Nakazawa, A. Suzuki, H. Kubota, and H. A. Haus, “The modulational instability laser. II. Theory,” IEEE J. Quantum Electron. 25, 2045–2052 (1989).
- S. Coen and M. Haelterman, “Impedance-matched modulational instability laser for background-free pulse train generation in the THz range,” Opt. Commun. 146, 339–346 (1998).
- S. Coen and M. Haelterman, “Continuous-wave ultrahigh-repetition-rate pulse train generation through modulational instability in a passive fiber cavity,” Opt. Lett. 26, 39–41 (2001).
- A. V. Mamaev, M. Saffman, and A. A. Zozulya, “Break-up of two-dimensional bright spatial solitons due to transverse modulation instability,” Europhys. Lett. 35, 25–30 (1996).
- A. V. Mamaev, M. Saffman, D. Z. Anderson, and A. A. Zozulya, “Propagation of light beams in anisotropic nonlinear media: from symmetry breaking to spatial turbulence,” Phys. Rev. A 54, 870–879 (1996).
- R. A. Fuerst, D.-M. Baboiu, B. Lawrence, W. E. Torruellas, G. I. Stegeman, S. Trillo, and S. Wabnitz, “Spatial modulational instability and multisolitonlike generation in a quadratically nonlinear optical medium,” Phys. Rev. Lett. 78, 2756–2759 (1997).
- H. Fang, R. Malendevich, R. Schiek, and G. I. Stegeman, “Spatial modulational instability in one-dimensional lithium niobate slab waveguides,” Opt. Lett. 25, 1786–1788 (2000).
- N. N. Akhmediev, V. M. Eleonskii, and N. E. Kulagin, “Generation of periodic trains of picosecond pulses in optical fiber: exact solutions,” Sov. Phys. JETP 62, 894–899 (1985).
- N. N. Akhmediev and A. Ankiewicz, Solitons: Nonlinear Pulses and Beams (Chapman & Hall, London, 1997), pp. 27–76.
- P. V. Mamyshev, P. G. Wigley, J. Wilson, C. Bosshard, and G. I. Stegeman, “Restoration of dual frequency signals with nonlinear propagation in fibers with positive group velocity dispersion,” Appl. Phys. Lett. 64, 3374–3376 (1994).
- D. L. Hart, A. F. Judy, R. Roy, and J. W. Beletic, “Dynamical evolution of multiple four-wave-mixing processes in an optical fiber,” Phys. Rev. E 57, 4757–4774 (1998).
- E. M. Dianov, P. V. Mamyshev, A. M. Prokhorov, and S. V. Chernikov, “Generation of a train of fundamental solitons at a high repetition rate in optical fibers,” Opt. Lett. 14, 1008–1010 (1989).
- P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, “Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron. 27, 2347–2355 (1991).
- P. V. Mamyshev, C. Bosshard, and G. I. Stegeman, “Generation of a periodic array of dark spatial solitons in the regime of effective amplification,” J. Opt. Soc. Am. B 11, 1254–1260 (1994).
- G. Van Simaeys, P. Emplit, and M. Haelterman, “Experimental demonstration of the Fermi–Pasta–Ulam recurrence in a modulationally unstable optical wave,” Phys. Rev. Lett. 87, 033902 (2001).
- R. A. Sammut, C. Pask, and Q. Y. Li, “Theoretical study of spatial solitons in planar waveguides,” J. Opt. Soc. Am. B 10, 485–491 (1993).
- S. Trillo and S. Wabnitz, “Dynamics of the nonlinear modulation instability in optical fibers,” Opt. Lett. 16, 986–988 (1991).
- S. Trillo, S. Wabnitz, and T. A. B. Kennedy, “Nonlinear dynamics of dual-frequency-pumped multiwave mixing in optical fibers,” Phys. Rev. A 50, 1732–1747 (1994).
- S. Maneuf and F. Reynaud, “Quasi-steady state self-trapping of first, second and third order sub-nanosecond soliton beams,” Opt. Commun. 66, 325–328 (1988).
- In fact, in Ref. 33 the recurrence was experimentally demonstrated by induction of MI with square-shaped pulses in a fiber. In this way, MI was negligibly influenced by either the rear or the front side of the pulse.
- N. N. Akhmediev, V. I. Korneev, and N. V. Mitskevich, “N-modulation signals in a single-mode optical waveguide under nonlinear conditions,” Sov. Phys. JETP 67, 89–95 (1988).
- Note that, rigorously, frequency detuning should be in-creased when I_{0} increases, in accordance with the change of variables of Eqs. (5), to keep the same dimensionless form of Eq. (4). Nevertheless, this is not strictly necessary when one is attempting to determine whether the MI-generated solitonlike arrays are recurrent.
- J.-M. Halbout and C. L. Tang, “Femtosecond interferometry for nonlinear optics,” Appl. Phys. Lett. 40, 765–767 (1982).
- D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988).
- R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), pp. 159–190.
- E. A. Kuznetsov, A. M. Rubenchik, and V. E. Zakharov, “Soliton stability in plasmas and hydrodynamics,” Phys. Rep. 142, 103–165 (1986).
- S. Trillo, S. Wabnitz, G. I. Stegeman, and E. M. Wright, “Parametric amplification and modulational instabilities in dispersive nonlinear directional couplers with relaxing nonlinearity,” J. Opt. Soc. Am. B 6, 889–900 (1989).
- G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995), pp. 50–55.
Cited By |
Alert me when this paper is cited |
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
« Previous Article | Next Article »
OSA is a member of CrossRef.