OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 6 — Jun. 1, 2002
  • pp: 1239–1246

Tunneling photodetachment of negative ions exposed to a bichromatic laser field

Vladimir A. Pazdzersky and Vladimir I. Usachenko  »View Author Affiliations


JOSA B, Vol. 19, Issue 6, pp. 1239-1246 (2002)
http://dx.doi.org/10.1364/JOSAB.19.001239


View Full Text Article

Enhanced HTML    Acrobat PDF (171 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Tunneling photoionization by a bichromatic field consisting of the coherent superposition of the fundamental laser field frequency and its second harmonic is studied theoretically within the framework of the adiabatic Landau–Dykhne approach applied to the process of negative-ion photodetachment. Analytical expressions for the probability of photodetachment were derived at two fixed specified values of relative phase shift, Φ=0 and Φ=π/2, between the harmonics of the incident bichromatic field. The derived expressions are thoroughly analyzed for two possible limiting cases of tunneling and multiphoton ionization and are demonstrated to be different from the respective expressions for the monochromatic case because of the presence of an effective field strength, which is a function that strongly depends on the parameters of the incident bichromatic field.

© 2002 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(020.4180) Atomic and molecular physics : Multiphoton processes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4180) Nonlinear optics : Multiphoton processes
(270.0270) Quantum optics : Quantum optics
(270.4180) Quantum optics : Multiphoton processes

Citation
Vladimir A. Pazdzersky and Vladimir I. Usachenko, "Tunneling photodetachment of negative ions exposed to a bichromatic laser field," J. Opt. Soc. Am. B 19, 1239-1246 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-6-1239


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Protopapas, C. H. Keitel, and P. L. Knight, “Atomic physics with super-high intensity lasers,” Rep. Prog. Phys. 60, 389–486 (1997). [CrossRef]
  2. F. Ehlotzky, “Atomic phenomena in bichromatic laser fields,” Phys. Rep. 345, 175–264 (2001). [CrossRef]
  3. H. G. Muller, P. H. Bucksbaum, D. W. Schumacher, and A. Zavriev, “Above-threshold ionisation with a two-colour laser field,” J. Phys. B 23, 2761–2769 (1990). [CrossRef]
  4. Y. Yin, C. Chen, and D. S. Elliott, “Asymmetric photoelectron angular distributions from interfering photoionization processes,” Phys. Rev. Lett. 69, 2353–2356 (1992). [CrossRef] [PubMed]
  5. D. W. Schumacher, F. Weihe, H. G. Muller, and P. H. Bucksbaum, “Phase dependence of intense field ionization: a study using two colors,” Phys. Rev. Lett. 73, 1344–1347 (1994). [CrossRef] [PubMed]
  6. S. Watanabe, K. Kondo, Y. Nabekawa, A. Sagisaka, and Y. Kobayashi, “Two-color phase control in tunneling ionization and harmonic generation by a strong laser field and its third harmonic,” Phys. Rev. Lett. 73, 2692–2695 (1994). [CrossRef] [PubMed]
  7. S. Watanabe, K. Kondo, Y. Nabekawa, A. Sagisaka, and Y. Kobayashi, “Tunneling ionization and harmonic generation in two-color fields,” J. Opt. Soc. Am. B 13, 424–428 (1996). [CrossRef]
  8. K. J. Schafer and K. C. Kulander, “Phase-dependent effects in multiphoton ionization induced by a laser field and its second harmonic,” Phys. Rev. A 45, 8026–8033 (1992). [CrossRef] [PubMed]
  9. R. M. Potvliege and P. H. G. Smith, “Two-colour multiphoton ionization of hydrogen by an intense laser field and one of its harmonics,” J. Phys. B 25, 2501–2516 (1992). [CrossRef]
  10. V. A. Pazdzersky and V. A. Yurovsky, “Photoionization by a bichromatic field: Adiabatic theory,” Phys. Rev. A 51, 632–640 (1995). [CrossRef] [PubMed]
  11. R. A. Blank and M. Shapiro, “Phase and intensity control of integral and differential above-threshold ionization rates,” Phys. Rev. A 52, 4278–4281 (1995). [CrossRef] [PubMed]
  12. V. A. Pazdzersky, V. I. Usachenko, and A. V. Ushnurtsev, “The asymmetry of negative ion photodetachment in a bichromatic laser field,” J. Phys. B 32, 4805–4821 (1999). [CrossRef]
  13. N. B. Baranova, H. R. Reiss, and B. Ya. Zel’dovich, “Multiphoton and tunnel ionization by an optical field with polar symmetry,” Phys. Rev. A 48, 1497–1505 (1993). [CrossRef] [PubMed]
  14. V. A. Pazdzersky, V. I. Usachenko, and A. A. Chernov, “Tunneling photoionization in a strong bichromatic laser field,” J. Phys. B 34, 363–368 (2001). [CrossRef]
  15. V. A. Pazdzersky, V. I. Usachenko, and A. V. Ushnurtsev, “On angular coherent control of photocurrent caused by photoionization in a bichromatic laser field,” J. Phys. B 34, 3513–3526 (2001). [CrossRef]
  16. M. Yu. Kuchiev and V. N. Ostrovsky, “Electron detachment from negative ions in a bichromatic laser field,” J. Phys. B 31, 2525–2538 (1998). [CrossRef]
  17. G. F. Gribakin and M. Yu. Kuchiev, “Multiphoton detachment of electrons from negative ions,” Phys. Rev. A 55, 3760–3771 (1997). [CrossRef]
  18. N. B. Delone and V. P. Krainov, Atoms in Strong Light Fields, Vol. 28 of Springer Series in Chemical Physics (Springer-Verlag, Berlin, 1985). [CrossRef]
  19. The atomic system of units is used here and elsewhere throughout this paper unless otherwise stated.
  20. This implies the zero value of the initial kinetic momentum (or velocity) of the photoelectron at the moment of its appearance in the continuum and is quite a conventional supposition for a tunneling regime of photoionization.21 In this context, however, see also quite a different, but more natural, supposition about this value22 and related consequences.
  21. G. G. Paulus, W. Becker, and H. Walther, “Classical rescattering effects in two-color above-threshold ionization,” Phys. Rev. A 52, 4043–4053 (1995). [CrossRef] [PubMed]
  22. R. Kopold, W. Becker, and M. Kleber, “Quantum-path analysis of high-order above-threshold ionization,” Opt. Commun. 179, 39–50 (2000). [CrossRef]
  23. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Zh. Eksp. Teor. Fiz. 47, 1945–1957 (1964) [ Sov. Phys. JETP 20, 1307–1314 (1965)].
  24. G. Manfray and C. Manus, “Multiphoton ionization of atoms,” Rep. Prog. Phys. 54, 1333–1372 (1991). [CrossRef]
  25. H. R. Reiss, “Theoretical methods in quantum optics: S-matrix and Keldysh techniques for strong-field processes,” Prog. Quantum Electron. 16, 1–71 (1992). [CrossRef]
  26. V. A. Pazdzersky and V. I. Usachenko, “On the influence of intercontinuum electromagnetic transitions on photoionisation probabilities,” Laser Phys. 5, 1137–1140 (1995).
  27. A. I. Baz’, Ya. B. Zel’dovich and A. M. Perelomov, Rasseiyanie, Reaktzii i Raspady v Nerelyativistskoi Kvantovoi Mekhanike (Scattering, Reactions and Decay in NonRelativistic Quantum Mechanics) (Nauka, Moscow, 1971; in Russian).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited