OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 19, Iss. 9 — Sep. 1, 2002
  • pp: 2183–2190

Enhanced χ(3) interactions of unamplified femtosecond Cr:forsterite laser pulses in photonic-crystal fibers

Aleksandr N. Naumov, Andrei B. Fedotov, Aleksei M. Zheltikov, Vladislav V. Yakovlev, Leonid A. Mel'nikov, Valentin I. Beloglazov, Nina B. Skibina, and Andrei V. Shcherbakov  »View Author Affiliations


JOSA B, Vol. 19, Issue 9, pp. 2183-2190 (2002)
http://dx.doi.org/10.1364/JOSAB.19.002183


View Full Text Article

Acrobat PDF (315 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Enhancement of nonlinear optical interactions in the core of a photonic-crystal fiber allows several χ(3) processes to be simultaneously observed in the field of unamplified 30-fs pulses of a Cr:forsterite laser. Subnanojoule fundamental-radiation pulses of this laser experience spectral broadening arising from self-phase modulation and generate the third harmonic at 410–420 nm. Third-harmonic pulses also appear spectrally broadened at the output of the fiber as a result of the cross-phase-modulation effect. This catalog of enhanced χ(3) processes observed in photonic-crystal fibers opens the way for using such fibers for frequency conversion of low-energy femtosecond pulses with simultaneous chirp control and subsequent pulse compression.

© 2002 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(320.7140) Ultrafast optics : Ultrafast processes in fibers

Citation
Aleksandr N. Naumov, Andrei B. Fedotov, Aleksei M. Zheltikov, Vladislav V. Yakovlev, Leonid A. Mel'nikov, Valentin I. Beloglazov, Nina B. Skibina, and Andrei V. Shcherbakov, "Enhanced χ(3) interactions of unamplified femtosecond Cr:forsterite laser pulses in photonic-crystal fibers," J. Opt. Soc. Am. B 19, 2183-2190 (2002)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-19-9-2183


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
  2. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997).
  3. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic bandgap guidance in optical fibers,” Science 282, 1476–1478 (1998).
  4. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, “Large mode area photonic crystal fibre,” Electron. Lett. 34, 1347–1348 (1998).
  5. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J.-P. De Sandro, “Photonic crystals as optical fibres—physics and applications,” Opt. Mater. 11, 143–151 (1999).
  6. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic guidance of light in air,” Science 285, 1537–1539 (1999).
  7. A. M. Zheltikov, “Holey fibers,” Phys. Usp. 170, 1203–1220 (2000).
  8. T. M. Monro, P. J. Bennett, N. G. R. Broderick, and D. J. Richardson, “Holey fibers with random cladding distributions,” Opt. Lett. 25, 206–208 (2000).
  9. N. G. R. Broderick, T. M. Monro, P. J. Bennett, and D. J. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999).
  10. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25–27 (2000).
  11. A. B. Fedotov, A. M. Zheltikov, L. A. Mel’nikov, A. P. Tarasevitch, and D. von der Linde, “Spectral broadening of femtosecond laser pulses in fibers with a photonic-crystal cladding,” JETP Lett. 71, 281–285 (2000).
  12. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Optical properties of high-delta air–silica microstructure optical fibers,” Opt. Lett. 25, 796–798 (2000).
  13. A. B. Fedotov, A. M. Zheltikov, A. P. Tarasevitch, and D. von der Linde, “Enhanced spectral broadening of short laser pulses in high-numerical-aperture holey fibers,” Appl. Phys. B 73, 181–184 (2001).
  14. Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82, 3568–3571 (1999).
  15. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102–5105 (2000).
  16. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundi, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
  17. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
  18. T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Supercontinuum generation in tapered fibers,” Opt. Lett. 25, 1415–1417 (2000).
  19. D. A. Akimov, A. B. Fedotov, A. A. Podshivalov, A. M. Zheltikov, A. A. Ivanov, M. V. Alfimov, S. N. Bagayev, V. S. Pivtsov, T. A. Birks, W. J. Wadsworth, and P. St. J. Russell, “Spectral superbroadening of subnanojoule Cr:forsterite femtosecond laser pulses in a tapered fiber,” JETP Lett. 74, 460–463 (2001).
  20. S. N. Bagayev, A. K. Dmitriyev, S. V. Chepurov, A. S. Dychkov, V. M. Klementyev, D. B. Kolker, S. A. Kuznetsov, Yu. A. Matyugin, M. V. Okhapkin, V. S. Pivtsov, M. N. Skvortsov, V. F. Zakharyash, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and A. M. Zheltikov, “Femtosecond frequency combs stabilized with a He–Ne/CH4 laser: toward a femtosecond optical clock,” Laser Phys. 11, 1270–1282 (2001).
  21. B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, “Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography,” Opt. Lett. 21, 1839–1841 (1996).
  22. A. A. Ivanov, M. V. Alfimov, and A. M. Zheltikov, “An all-solid-state sub-40-fs self-starting Cr4+:forsterite laser broadly tunable within therapeutic-window range for high-resolution coherence-domain and nonlinear-optical biomedical applications,” Laser Phys. 10, 796–799 (2000).
  23. G. P. Agrawal, Nonlinear Fiber Optics (Academic, Boston, 1989).
  24. N. I. Koroteev and A. M. Zheltikov, “Chirp control in third-harmonic generation due to cross-phase modulation,” Appl. Phys. B 67, 53–57 (1998).
  25. A. M. Zheltikov, N. I. Koroteev, and A. N. Naumov, “Self- and cross-phase modulation accompanying third-harmonic generation in a hollow waveguide,” JETP 88, 857–867 (1999).
  26. R. Maleck Rassoul, A. Ivanov, E. Freysz, A. Ducasse, and F. Hache, “Second-harmonic generation under phase-velocity and group-velocity mismatch: influence of cascading self-phase and cross-phase modulation,” Opt. Lett. 22, 268–270 (1997).
  27. A. N. Naumov and A. M. Zheltikov, “Asymmetric spectral broadening and temporal evolution of cross-phase-modulated third harmonic pulses,” Opt. Express 10, 122–127 (2002).
  28. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).
  29. I. S. Grigor’ev and E. Z. Meilikhov, eds., Physical Quantities Handbook (Energoatomizdat, Moscow, 1991) (in Russian).
  30. P. K. Tien, R. Ultich, and R. Martin, “Optical second-harmonic generation in form of coherent Cerenkov radia-tion from a thin-film waveguide,” Appl. Phys. Lett. 17, 447–450 (1970).
  31. N. A. Sanford and W. C. Robinson, “Direct measurement of effective indices of guided modes in LiNbO3 waveguides using the Čerenkov second harmonic,” Opt. Lett. 12, 445–447 (1987).
  32. R. Ramponi, R. Osellame, M. Marangoni, and V. Russo, “Near-infrared refractometry of liquids by means of waveguide Čerenkov second-harmonic generation,” Appl. Opt. 37, 1–6 (1998).
  33. R. Ramponi, M. Marangoni, R. Osellame, and V. Russo, “Nonconventional characterization of single-mode planar proton-exchanged LiNbO3 waveguides by Cerenkov second harmonic generation,” Opt. Commun. 159, 37–42 (1999).
  34. H. Z. Hu, K. Sh. Zhong, D. Q. Tang, and Zh. X. Lu, “Theoretical analysis of Cherenkov frequency-doubling in a periodically poled LiNbO3 waveguide,” Opt. Commun. 174, 105–118 (2000).
  35. D. Pezzetta, C. Sibilia, R. Ramponi, R. Osellame, M. Marangoni, M. Bertolotti, J. W. Haus, M. Scalora, M. J. Bloemer, and C. M. Bowden, “Enhanced Čerenkov second-harmonic generation in planar nonlinear waveguide reproducing a one-dimensional photonic bandgap,” J. Opt. Soc. Am. B 19, 2102–2110 (2002).
  36. S. A. Akhmanov, V. A. Vysloukh, and A. S. Chirkin, Optics of Femtosecond Laser Pulses (American Institute of Physics, New York, 1992).
  37. J. Broeng, S. E. Barkou, T. Søndergaard, and A. Bjarklev, “Analysis of air-guiding photonic bandgap fibers,” Opt. Lett. 25, 96–98 (2000).
  38. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, “Holey optical fibers: an efficient modal model,” J. Lightwave Technol. 17, 1093–1102 (1999).
  39. F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, “Complete analysis of the characteristics of propagation into photonic crystal fibers by the finite element method,” Opt. Fiber Technol.: Mater., Devices Syst. 6, 181–191 (2000).
  40. A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés, and M. V. Andrés, “Vector description of higher-order modes in photonic crystal fibers,” J. Opt. Soc. Am. B 17, 1333–1340 (2000).
  41. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennet, “Modeling large air fraction holey optical fibers,” J. Lightwave Technol. 18, 50–56 (2000).
  42. T. P. White, R. C. McPhedran, L. C. Botten, G. H. Smith, and C. Martijn de Sterke, “Calculations of air-guided modes in photonic crystal fibers using the multipole method,” Opt. Express 9, 721–732 (2001).
  43. A. M. Zheltikov, M. V. Alfimov, A. B. Fedotov, A. A. Ivanov, M. S. Syrchin, A. P. Tarasevitch, and D. von der Linde, “Controlled light localization and nonlinear-optical interactions of ultrashort laser pulses in micro- and nanostructured fibers with a tunable photonic band gap,” JETP 93, 499–509 (2001).
  44. V. Shcheslavskiy, V. V. Yakovlev, and A. A. Ivanov, “High-energy self-starting femtosecond Cr4+:Mg2SiO4 oscillator operating at a low repetition rate,” Opt. Lett. 26, 1952–1954 (2001).
  45. M. V. Alfimov, A. M. Zheltikov, A. A. Ivanov, V. I. Beloglazov, B. A. Kirillov, S. A. Magnitskii, A. V. Tarasishin, A. B. Fedotov, L. A. Mel’nikov, and N. B. Skibina, “Photonic-crystal fibers with a photonic band gap tunable within the range of 930–1030 nm,” JETP Lett. 71, 489–492 (2000).
  46. A. B. Fedotov, M. V. Alfimov, A. A. Ivanov, A. V. Tarasishin, V. I. Beloglazov, A. P. Tarasevitch, D. von der Linde, B. A. Kirillov, S. A. Magnitskii, D. Chorvat, D. Chorvat Jr., A. N. Naumov, E. A. Vlasova, D. A. Sidorov-Biryukov, A. A. Podshivalov, O. A. Kolevatova, L. A. Mel’nikov, D. A. Akimov, V. A. Makarov, Yu. S. Skibina, and A. M. Zheltikov, “Holey fibers with 0.4–32-μm-lattice-constant photonic band-gap cladding: fabrication, characterization, and nonlinear-optical measurements,” Laser Phys. 11, 138–145 (2001).
  47. C. G. Durfee III, S. Backus, H. C. Kapteyn, and M. M. Murnane, “Intense 8-fs pulse generation in the deep ultraviolet,” Opt. Lett. 24, 697–699 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited