OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 9 — Sep. 1, 2002
  • pp: 2250–2262

Poly(p-phenylenevinylene) derivatives: new promising materials for nonlinear all-optical waveguide switching

Mark Andreas Bader, Gerd Marowsky, Ayi Bahtiar, Kaloian Koynov, Christoph Bubeck, Hartwig Tillmann, Hans-Heinrich Hörhold, and Suresh Pereira  »View Author Affiliations

JOSA B, Vol. 19, Issue 9, pp. 2250-2262 (2002)

View Full Text Article

Acrobat PDF (487 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Several new derivatives of poly(<i>p</i>-phenylenevinylene) (PPV) are investigated regarding their linear and nonlinear optical material and waveguide properties, including their nonlinear photonic bandgap properties that are induced by photoablated periodic Bragg gratings. The new materials were prepared by means of the polycondensation route, which yields polymers with excellent solubilities and film-forming properties. Comparative data suggest that the new polycondensation-type MEH-PPV (completely soluble, strictly linear and fully conjugated), in particular, is the most promising polymer under investigation to fulfill the requirements for all-optical switching in planar waveguide photonic bandgap structures. UV-photobleaching techniques and photoablation in the UV, VIS, and near-infrared ranges at different pulse durations are investigated. Homogeneous submicrometer gratings that serve as Bragg reflectors have been fabricated in MEH-PPV thin films by application of these methods. The great potential of this type of materials for nonlinear all-optical switching applications that arises from their unique optical properties and their patterning behavior is discussed in detail. Numerical simulations of a switching device based on gap-soliton formation in a nonlinear periodic waveguide structure with the newly obtained material data have been carried out. We show that one can expect photonic bandgap all-optical switching in MEH-PPV planar waveguides. Device performance considering different grating parameters is discussed.

© 2002 Optical Society of America

OCIS Codes
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.4710) Nonlinear optics : Optical nonlinearities in organic materials

Mark Andreas Bader, Gerd Marowsky, Ayi Bahtiar, Kaloian Koynov, Christoph Bubeck, Hartwig Tillmann, Hans-Heinrich Hörhold, and Suresh Pereira, "Poly(p-phenylenevinylene) derivatives: new promising materials for nonlinear all-optical waveguide switching," J. Opt. Soc. Am. B 19, 2250-2262 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. QE-13, 233–253 (1977).
  2. G. I. Stegeman and R. H. Stolen, “Waveguides and fibers for nonlinear optics,” J. Opt. Soc. Am. B 6, 652–662 (1989).
  3. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
  4. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
  5. N. I. Koroteev, S. A. Magnitskii, A. V. Tarasishin, and A. M. Zheltikov, “Compression of ultrashort light pulses in photonic crystals: when envelopes cease to be slow,” Opt. Commun. 159, 191–202 (1999).
  6. M. Scalora, J. P. Dowling, C. M. Bowden, and M. J. Bloemer, “Optical limiting and switching of ultrashort pulses in nonlinear photonic bandgap materials,” Phys. Rev. Lett. 73, 1368–1371 (1994).
  7. H. G. Winful, G. D. Marburger, and E. Garmire, “Theory of bistability in nonlinear distributed feedback structures,” Appl. Phys. Lett. 35, 379–381 (1979).
  8. W. Chen and D. L. Mills, “Gap solitons and the nonlinear optical response of superlattices,” Phys. Rev. Lett. 58, 160–163 (1987).
  9. C. M. de Sterke and J. E. Sipe, “Gap solitons,” in Progress in Optics, E. Wolf, ed. (Elsevier Science, Amsterdam, 1994), Vol. 33, pp. 203–260.
  10. C. M. de Sterke, D. G. Salinas, and J. E. Sipe, “Coupled-mode theory for light propagation through deep nonlinear gratings,” Phys. Rev. E 54, 1969–1989 (1996).
  11. A. B. Aceves and S. Wabnitz, “Self-induced transparency solitons in nonlinear refractive periodic media,” Phys. Lett. A 141, 37–42 (1989).
  12. J. E. Ehrlich, G. Assanto, and G. I. Stegeman, “All-optical tuning of waveguide nonlinear distributed feedback gratings,” Appl. Phys. Lett. 56, 602–604 (1990).
  13. N. D. Sankey, D. F. Prelewitz, and T. G. Brown, “All-optical switching in a nonlinear periodic-waveguide structure,” Appl. Phys. Lett. 60, 1427–1429 (1992).
  14. K. Nakatsuhara, T. Mizumoto, E. Takahashi, S. Hossain, Y. Saka, B.-J. Ma, and Y. Nakano, “All-optical switching in a distributed-feedback GaInAsP waveguide,” Appl. Opt. 38, 3911–3916 (1999).
  15. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996).
  16. N. G. R. Broderick, D. Taverner, and D. J. Richardson, “Nonlinear switching in fiber Bragg gratings,” Opt. Express 3, 447–453 (1998), http://epubs.osa.org/opticsexpress.
  17. K. Sasaki, K. Fujii, T. Tomioka, and T. Kinoshita, “All-optical bistabilities of polydiacetylene Langmuir–Blodgett film waveguides,” J. Opt. Soc. Am. B 5, 457–461 (1988).
  18. S. Aramaki, G. Assanto, G. I. Stegeman, W. H. G. Horstuis, and G. R. Möhlman, “Integrated Bragg reflectors in polymeric channel waveguides,” Opt. Commun. 94, 326–330 (1992).
  19. V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic bandgaps and holography,” J. Appl. Phys. 82, 60–64 (1997).
  20. P. N. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge U. Press, Cambridge, UK, 1990).
  21. J. Messier, F. Kajzar, P. N. Prasad, and D. Ulrich, eds., Nonlinear Optical Effects in Organic Polymers (Kluwer, Dordrecht, The Netherlands, 1989).
  22. F. Kajzar and J. D. Swalen, eds., Organic Thin Films for Waveguiding Nonlinear Optics (Gordon and Breach, Amsterdam, 1996).
  23. G. I. Stegeman, “Applications of organic materials in third-order nonlinear optics,” in Nonlinear Optics of Organic Molecules and Polymers, H. S. Nalwa and S. Miyata, eds. (CRC Press, Boca Raton, Fla., 1997), pp. 799–812.
  24. D. S. Chemla and J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, Orlando, Fla., 1987), Vol. 2.
  25. L. Palchetti, Q. Li, E. Giorgetti, D. Grando, and S. Sottini, “Photobleaching of polydiacetylene waveguides: a characterization of the process and patterning of optical elements,” Appl. Opt. 36, 1204–1212 (1997).
  26. H. S. Nalwa, “Organic materials for third-order nonlinear optics,” Adv. Mater. 5, 341–358 (1993).
  27. C. Bubeck, A. Kaltbeitzel, R. W. Lenz, D. Neher, J. D. Stenger-Smith, and G. Wegner, “Nonlinear optical properties of poly(p-phenylenevinylene) thin films,” in Nonlinear Optical Effects in Organic Polymers, J. Messier, F. Kajzar, P. N. Prasad, and D. Ulrich, eds. (Kluwer, Dordrecht, The Netherlands, 1989), pp. 143–147.
  28. A. Mathy, K. Ueberhofen, R. Schenk, H. Gregorius, R. Garay, K. Müllen, and C. Bubeck, “Third-harmonic-generation spectroscopy of poly(p-phenylenevinylene): a comparison with oligomers and scaling laws for conjugated polymers,” Phys. Rev. B 53, 4367–4376 (1996).
  29. C. Bubeck, K. Ueberhofen, J. Ziegler, F. Fitrilawati, U. Baier, H. Eichner, C. Former, K. Müllen, S. Pfeiffer, H. Tillmann, and H.-H. Hörhold, “Waveguides of conjugated polymers with large cubic nonlinearities,” Nonlinear Opt. 25, 93–104 (2000).
  30. U. Bartuch, A. Bräuer, P. Dannberg, H.-H. Hörhold, and D. Raabe, “Measurement of high nonresonant third-order nonlinearity in MP-PPV waveguides,” Int. J. Optoelectron. 7, 275–279 (1992).
  31. F. Michelotti, T. Gabler, H.-H. Hörhold, R. Waldhäusl, and A. Bräuer, “Prism coupling in DMOP-PPV optical waveguides,” Opt. Commun. 114, 247–254 (1995).
  32. Th. Gabler, R. Waldhäusl, A. Bräuer, U. Bartuch, R. Stockmann, and H.-H. Hörhold, “Nonresonant n2 and two-photon-absorption dispersion measurements of DPOP-PPV and DP-PPV/DP-DFP polymer strip waveguides,” Opt. Commun. 137, 31–36 (1997).
  33. Th. Gabler, A. Bräuer, R. Waldhäusl, U. Bartuch, H.-H. Hörhold, and F. Michelotti, “Nonresonant n2 and TPA coefficient measurement in polymer waveguides by different measurement techniques,” Pure Appl. Opt. 7, 159–168 (1998).
  34. S. J. Martin, D. D. C. Bradley, P. A. Lane, H. Mellor, and P. L. Burn, “Linear and nonlinear optical properties of the conjugated polymers PPV and MEH-PPV,” Phys. Rev. B 59, 15133–15142 (1999).
  35. K. Ueberhofen, A. Deutesfeld, K. Koynov, and C. Bubeck, “Nonlinear optical waveguide spectroscopy of a conjugated polymer: poly(p-phenylenevinylene),” J. Opt. Soc. Am. B 16, 1921–1935 (1999).
  36. K. Koynov, N. Goutev, F. Fitrilawati, A. Bahtiar, A. Best, C. Bubeck, and H.-H. Hörhold, “Nonlinear prism coupling of MEH-PPV waveguides and their figure of merit for all-optical switching,” J. Opt. Soc. Am. B 19, 895–901 (2002).
  37. The following authors, F. Fitrilawati, M. O. Tjia, S. Pfeiffer, H. Tillmann, H.-H. Hörhold, A. Deutesfeld, H. Eichner, and C. Bubeck, have submitted a paper entitled “Planar waveguides of PPV derivatives: attenuation loss, third-harmonic generation, and photostability” to Opt. Mater.
  38. H.-H. Hörhold, H. Tillmann, D. Raabe, M. Helbig, W. Elflein, A. Bräuer, W. Holzer, and A. Penzkofer, “Synthesis of TPD-containing polymers for use as light-emitting materials in electroluminescent and laser devices,” in Organic Light Emitting Materials and Devices IV, Z. A. Kafafi, ed., Proc. SPIE 4105, 431–442 (2001).
  39. H.-H. Hörhold, H. Tillmann, C. Bader, E. Klemm, W. Holzer, and A. Penzkofer, “MEH-PPV and thianthrene-containing PPV-derivatives as efficient polymeric materials for solid-state lasers,” in Organic Light Emitting Materials and Devices V, Z. A. Kafafi, ed., Proc. SPIE 4464, 317–328 (2002).
  40. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nature 397, 121–128 (1999).
  41. M. D. McGehee and A. J. Heeger, “Semiconducting (conjugated) polymers as materials for solid-state lasers,” Adv. Mater. 12, 1655–1668 (2000).
  42. H.-H. Hörhold, H. Tillmann, C. Bader, R. Stockmann, J. Novotny, E. Klemm, W. Holzer, and A. Penzkofer, “MEH-PPV and dialkoxy phenylene vinylene copolymers. Synthesis and lasing characterization,” Synth. Met. 119, 199–200 (2001).
  43. G. Kranzelbinder, E. Toussaere, J. Zyss, A. Pogantsch, E. W. J. List, H. Tillmann, and H.-H. Hörhold, “Optically written solid-state DFB lasers with broadly tuneable mode emission based on improved poly(2, 5-dialkoxy-phenylene vinylene),” Appl. Phys. Lett. 80, 716–718 (2002).
  44. S. Pfeiffer and H.-H. Hörhold, “Investigation of poly(arylene vinylene)s, 41—synthesis of soluble dialkoxy-substituted poly(phenylene alkenylidene)s by applying the Horner reaction for condensation polymerization,” Macromol. Chem. Phys. 200, 1870–1878 (1999).
  45. S. Pfeiffer and H.-H. Hörhold, “Synthesis of soluble MEH-PPV and MEH-PPB by HORNER condensation polymerization,” Synth. Met. 101, 109–110 (1999).
  46. A. Mathy, H.-U. Simmrock, and C. Bubeck, “Optical waveguiding in thin films of polyelectrolytes,” J. Phys. D 24, 1003–1008 (1991).
  47. R. Ulrich and R. Torge, “Measurement of thin film parameters with a prism coupler,” Appl. Opt. 12, 2901–2908 (1973).
  48. H. Schmidt, J. Ihlemann, and B. Wolff-Rottke, “Excimer laser micromachining based on dielectric masks,” in Laser Materials Processing and Machining, R. Ahlers, P. Hoffmann, H. Lindl, and R. Rothe, eds., Proc. SPIE 2246, 67–73 (1994).
  49. K. Chen, J. Ihlemann, P. Simon, I. Baumann, and W. Sohler, “Generation of submicron surface gratings on LiNbO3 by ultrashort UV laser pulses,” Appl. Phys. A 65, 517–518 (1997).
  50. F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, J. Edlinger, D. Neuschäfer, and D. Anselmetti, “Sub-μm grating formation in Ta2O5-waveguides by femtosecond UV-laser ablation,” Appl. Surf. Sci. 138–139, 107–110 (1999).
  51. M. E. Lines, “Physical properties of materials: theoretical overview,” in Handbook of Infrared Optical Materials, P. Klocek, ed. (Marcel Dekker, New York, 1991), p. 57.
  52. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity single-beam n2 measurement,” Opt. Lett. 14, 955–957 (1989).
  53. C. Bubeck, A. Kaltbeitzel, A. Grund, and M. LeClerc, “Resonant degenerate four wave mixing and scaling laws for saturable absorption in thin films of conjugated polymers and Rhodamine 6G,” Chem. Phys. 154, 343–348 (1991).
  54. L. J. Rothberg, M. Yan, F. Papadimitrakopoulos, M. E. Galvin, E. W. Kwock, and T. M. Miller, “Photophysics of phenylenevinylene polymers,” Synth. Met. 80, 41–58 (1996).
  55. V. Mizrahi, K. W. DeLong, G. I. Stegeman, M. A. Saifi, and M. J. Andrejco, “Two-photon absorption as a limitation to all-optical switching,” Opt. Lett. 14, 1140–1142 (1989).
  56. J.-H. Klein-Wiele, M. A. Bader, I. Bauer, S. Soria, P. Simon, and G. Marowsky, “Ablation dynamics of periodic nanostructures for polymer-based all-optical devices,” Synth. Met. 127, 53–57 (2002).
  57. J. E. Sipe, L. Poladian, and C. M. de Sterke, “Propagation through nonuniform grating structures,” J. Opt. Soc. Am. A 11, 1307–1320 (1994).
  58. M. A. Bader and G. Marowsky, “Bragg gratings in planar polydiacetylene waveguides and their application in integrated optics,” Synth. Met. 124, 141–143 (2001).
  59. M. J. Steel and C. M. de Sterke, “Gap solitary waves with gain and two-photon absorption,” Phys. Rev. A 48, 1625–1632 (1993).
  60. For an illustration of these oscillations and how they can be removed by apodization see, e.g., J. E. Sipe, B. J. Eggleton, and T. A. Strasser, “Dispersion characteristics of nonuniform Bragg gratings: implications for WDM communication systems,” Opt. Commun. 152, 269–274 (1998).
  61. Dietrich Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974).
  62. C. M. de Sterke, K. R. Jackson, and B. D. Robert, “Nonlinear coupled-mode equations on a finite interval: a numerical procedure,” J. Opt. Soc. Am. B 8, 403–421 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited