OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 19, Iss. 9 — Sep. 1, 2002
  • pp: 2273–2281

Photonic bandgap materials and birefringent layers based on anisotropically nanostructured silicon

Pavel K. Kashkarov, Leonid A. Golovan, Andrei B. Fedotov, Alexandra I. Efimova, Lubov P. Kuznetsova, Victor Yu. Timoshenko, Dmitrii A. Sidorov-Biryukov, Aleksei M. Zheltikov, and Joseph W. Haus  »View Author Affiliations

JOSA B, Vol. 19, Issue 9, pp. 2273-2281 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (702 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Porous-silicon (PS) based multilayer periodic structures with photonic bandgaps (PBGs) and PS single layers that have a strong in-plane birefringence are produced by the electrochemical nanostructuring of crystalline silicon wafers of different crystallographic orientations. Calculations and experiments demonstrate the possibility of improving phase matching for second optical harmonic generation in PS-based PBG structures. Multilayer structures made of birefringent PS exhibit polarization-tunable (dichroic) PBGs, which offer much promise for various optical applications. Improved phase matching was experimentally demonstrated for second-harmonic generation in birefringent PS, suggesting that PBG and birefringent PS structures may serve to phase-match and enhance wave-mixing processes in nonlinear optical materials embedded in the pores of these matrices.

© 2002 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(190.5970) Nonlinear optics : Semiconductor nonlinear optics including MQW
(230.4170) Optical devices : Multilayers
(260.1440) Physical optics : Birefringence

Pavel K. Kashkarov, Leonid A. Golovan, Andrei B. Fedotov, Alexandra I. Efimova, Lubov P. Kuznetsova, Victor Yu. Timoshenko, Dmitrii A. Sidorov-Biryukov, Aleksei M. Zheltikov, and Joseph W. Haus, "Photonic bandgap materials and birefringent layers based on anisotropically nanostructured silicon," J. Opt. Soc. Am. B 19, 2273-2281 (2002)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. See, for example, A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys. 82, 909–965 (1997). [CrossRef]
  2. L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57, 1046–1048 (1990). [CrossRef]
  3. P. K. Kashkarov, B. V. Kamenev, E. A. Konstantinova, A. I. Efimova, A. V. Pavlikov, and V. Yu. Timoshenko, “Dynamics of nonequilibrium charge carriers in silicon quantum wires,” Phys. Usp. 41, 511–515 (1998). [CrossRef]
  4. See for example, W. Theiss, “Optical properties of porous silicon,” Surf. Sci. Rep. 29, 91–192 (1997). [CrossRef]
  5. O. Bisi, S. Ossicini, and L. Pavesi, “Porous silicon: a quantum sponge structure for silicon based optoelectronics,” Surf. Sci. Rep. 38, 1–126 (2000). [CrossRef]
  6. G. Vincent, “Optical properties of porous silicon superlattices,” Appl. Phys. Lett. 64, 2367–2369 (1994). [CrossRef]
  7. L. Pavesi, G. Panzarini, and L. C. Andreani, “All-porous silicon-coupled microcavities: experiment versus theory,” Phys. Rev. B 58, 15794–15800 (1998). [CrossRef]
  8. M. Krüger, M. G. Berger, M. Marso, W. Reetz, Th. Eickhoff, R. Loo, L. Vescan, M. Thönissen, H. Lüth, R. Arens-Fisher, S. Hilbrich, and W. Theiss, “Color-sensitive Si-photodiode using porous silicon interference filters,” Jpn. J. Appl. Phys., Part 2 36, L24–L26 (1997). [CrossRef]
  9. S. Zangooie, R. Janson, and H. Arwin, “Reversible and irreversible control of optical properties of porous silicon superlattices by thermal oxidation, vapor adsorption, and liquid penetration,” J. Vac. Sci. Technol. 16, 2901–2912 (1998). [CrossRef]
  10. L. Canham, M. P. Stewart, J. M. Buriak, C. L. Reeves, M. Anderson, E. K. Squire, P. Allcock, and P. A. Snow, “Derivatized porous silicon mirrors: implantable optical components with slow resorbability,” Phys. Status Solidi A 182, 521–525 (2000). [CrossRef]
  11. S. Chan, P. M. Fauchet, Y. Li, L. J. Rothberg, and B. L. Miller, “Porous silicon microcavities for biosensing applications,” Phys. Status Solidi A 182, 541–546 (2000). [CrossRef]
  12. G. Mattei, E. V. Alieva, J. E. Petrov, and V. A. Yakovlev, “Enhancement of adsorbate vibration due to interaction with microcavity mode in porous silicon superlattice,” Surf. Sci. 427–428, 235–238 (1999). [CrossRef]
  13. L. A. Kuzik, V. A. Yakovlev, and G. Mattei, “Raman scattering enhancement in porous silicon microcavity,” Appl. Phys. Lett. 75, 1830–1832 (1999). [CrossRef]
  14. G. Mattei, A. Marucci, V. A. Yakovlev, and M. Pagannone, “Porous silicon optical filters for application to laser technology,” Laser Phys. 8, 755–757 (1998).
  15. L. A. Golovan, P. K. Kashkarov, M. S. Syrchin, and A. M. Zheltikov, “One-dimensional porous-silicon photonic band-gap structures with tunable reflection and dispersion,” Phys. Status Solidi A 182, 437–442 (2000). [CrossRef]
  16. N. I. Koroteev, S. A. Magnitskii, A. V. Tarasishin, and A. M. Zheltikov, “Compression of ultrashort light pulses in photonic crystals: when envelopes cease to be slow,” Opt. Commun. 159, 191–201 (1999). [CrossRef]
  17. L. A. Golovan’, A. M. Zheltikov, P. K. Kashkarov, N. I. Koroteev, M. G. Lisachenko, A. N. Naumov, D. A. Sidorov-Biryukov, V. Yu. Timoshenko, and A. B. Fedotov, “Generation of the second optical harmonic in porous-silicon-based structures with a photonic band gap,” JETP Lett. 69, 300–305 (1999). [CrossRef]
  18. T. V. Dolgova, A. I. Maidikovskii, M. G. Martem’yanov, G. Marovsky, G. Mattei, D. Schuhmacher, V. A. Yakovlev, A. A. Fedyanin, and O. A. Aktsipetrov, “Giant second harmonic generation in microcavities based on porous silicon photonic crystals,” JETP Lett. 73, 6–9 (2001). [CrossRef]
  19. M. Scalora, M. J. Bloemer, A. S. Manka, J. P. Dowling, C. M. Bowden, R. Viswanathan, J. W. Haus, “Pulsed second-harmonic generation in nonlinear, one-dimensional, periodic structures,” Phys. Rev. A 56, 3166–3174 (1997). [CrossRef]
  20. A. M. Zheltikov, A. V. Tarasishin, and S. A. Magnitskii, “Phase and group-velocity matching in ultrashort-pulse second-harmonic generation in one-dimensional photonic crystals,” J. Exp. Theor. Phys. 91, 298–306 (2000). [CrossRef]
  21. M. Centini, C. Sibilia, M. Scalora, G. D’Aguanno, M. Bertolotti, M. J. Bloemer, C. M. Bowden, and I. Nefedov, “Dispersive properties of finite, one-dimensional photonic band-gap structures: applications to nonlinear quadratic interactions,” Phys. Rev. E 60, 4891–4898 (1999). [CrossRef]
  22. F. Genereux, S. W. Leonard, H. M. van Driel, A. Birner, and U. Gösele, “Large birefringence in two-dimensional silicon photonic crystals,” Phys. Rev. B 63, 161101–1–161101–4 (2001). [CrossRef]
  23. I. Mihalcescu, G. Lerondel, R. Romestain, “Porous silicon anisotropy investigated by guided light,” Thin Solid Films 297, 245–249 (1997). [CrossRef]
  24. M. E. Kompan, J. Salonen, and I. Yu. Shabanov, “Anomalous birefringence of light in free-standing samples of porous silicon,” JETP 90, 324–329 (2000). [CrossRef]
  25. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1960).
  26. O. G. Sarbey, E. K. Frolova, R. D. Fedorovich, and D. B. Dan’ko, “Birefringence of porous silicon,” Phys. Status Solidi 42, 1240–1241 (2000).
  27. D. Kovalev, G. Polisski, J. Diener, H. Heckler, N. Künzner, V. Yu. Timoshenko, and F. Koch, “Strong in-plane birefringence in nanostructured silicon,” Appl. Phys. Lett. 78, 916–918 (2001). [CrossRef]
  28. N. Künzner, D. Kovalev, J. Diener, E. Gross, V. Yu. Timoshenko, G. Polisski, F. Koch, and M. Fujii, “Giant birefrin-gence in anisotropically nanostructured silicon,” Opt. Lett. 26, 1265–1268 (2001). [CrossRef]
  29. A. M. Zheltikov, N. I. Koroteev, and A. B. Fedotov, “Generation of optical harmonics and frequency mixing in a plasma of optical breakdown,” Laser Phys. 4, 569–581 (1994).
  30. A. B. Fedotov, N. I. Koroteev, A. N. Naumov, D. A. Sidorov-Biryukov, and A. M. Zheltikov, “Coherent four-wave mixing in a laser-preproduced plasma: optical frequency conversion and two-dimensional mapping of atoms and ions,” J. Nonlinear Opt. Phys. Mater. 6, 387–410 (1997). [CrossRef]
  31. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).
  32. D. A. G. Bruggeman, “Berechnung verschiedener physikalisher Konstanten von heterogen Substanzen,” Ann. Phys. (Leipzig) 24, 634–664 (1935).
  33. L. A. Golovan, V. Yu. Timoshenko, A. B. Fedotov, L. P. Kuznetsova, D. A. Sidorov-Biryukov, P. K. Kashkarov, A. M. Zheltikov, D. Kovalev, N. Künzner, E. Gross, J. Diener, G. Polisski, and F. Koch, “Phase matching of second-harmonic generation in birefringent porous silicon,” Appl. Phys. B 73, 31–34 (2001). [CrossRef]
  34. E. Gross, D. Kovalev, N. Künzner, V. Yu. Timoshenko, J. Diener, and F. Koch, “Highly sensitive recognition element based on birefringent porous silicon layers,” J. Appl. Phys. 90(7), 3529–3532 (2001). [CrossRef]
  35. R. L. Sutherland, Handbook on Nonlinear Optics (Marcel Dekker, New York, 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited