## Classical and quantum treatment of amplifier and superradiant free-electron laser dynamics

JOSA B, Vol. 2, Issue 1, pp. 250-258 (1985)

http://dx.doi.org/10.1364/JOSAB.2.000250

Acrobat PDF (1125 KB)

### Abstract

We describe the quantum initiation for free-electron lasers and derive the collective instability threshold starting from the electron position and the momentum quantum fluctuations. We obtain the Glauber distribution P(α) for the field, that is, a displaced Gaussian, which represents the superposition of a coherent field (stimulated emission) and an incoherent one (spontaneous emission). We define and discuss the concept of superradiance for free-electron lasers, both in a classical framework and at a quantum statistical level, stating the conditions under which the effect should be observed.

© 1985 Optical Society of America

**Citation**

Rodolfo Bonifacio and Federico Casagrande, "Classical and quantum treatment of amplifier and superradiant free-electron laser dynamics," J. Opt. Soc. Am. B **2**, 250-258 (1985)

http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-2-1-250

Sort: Year | Journal | Reset

### References

- S. F. Jacobs, G. T. Moore, H. S. Pilloff, M. Sargent III, M. O. Scully, and R. Spitzer, eds., Free-Electron Generators of Coherent Radiation (Addison-Wesley, Reading, Mass., 1982); S. Martellucci and N. A. Chester, eds., Free Electron Lasers (Plenum, New York, 1983).
- L. R. Elias, W. M. Fairbank, J. M. J. Madey, H. A. Schwettman, and T. I. Smith, "Observation of stimulated emission of radiation by relativistic electrons in a spatially periodic transverse magnetic field," Phys. Rev. Lett. 36, 717–720 (1976); D. A. G. Deacon, L. R. Elias, J. M. J. Madey, G. J. Ramian, H. A. Schwettman, and T. I. Smith, "First operation of a free-electron laser," Phys. Rev. Lett. 38, 892–894 (1977).
- J. R. Pierce, Traveling Wave Tubes (Van Nostrand, New York, 1950).
- N. M. Kroll and W. A. McMullin, "Stimulated emission from relativistic electrons passing through a spatially periodic transverse magnetic field," Phys. Rev. A 17, 300–308 (1978); I. B. Bernstein and J. L. Hirschfield, "Amplification on a relativistic electron beam in a spatially periodic transverse magnetic field," Phys. Rev. A 20, 1661–1670 (1979); P. Sprangle, C. M. Tang, and W H Manheimer, "Nonlinear theory of free-electron lasers and efficiency enhancement," Phys. Rev. A 21, 302–308 (1980); A. Gover and P. Sprangle, "A unified theory of magnetic bremmstrahlung, electrostatic bremsstrahlung, Compton-Raman scattering and Cherenkov-Smith-Purcell free-electron lasers," IEEE J. Quantum Electron. QE-17, 1196–1215 (1981); G. Dattoli, A. Marino, A. Renieri, and F. Romanelli, "Progress in the Hamiltonian picture of the free-electron laser," IEEE J. Quantum Electron. QE-17, 1371–1386 (1981); C. C. Shih and A. Yariv, "Inclusion of space-charge effects with Maxwell's equations in the single-particle analysis of free-electron lasers," IEEE J. Quantum Electron. QE-17, 1387–1394 (1981). Instabilities of a different kind with respect to the collective instability considered here have been discussed, e.g., in W. B. Colson and R. A. Friedman, "Synchrotron instability for long pulses in free electron laser oscillators," Opt. Commun. 46, 37–42 (1983); V. A. Buts and V. V. Ognivenko, "Stochastic instability of the motion of particles in free-electron lasers," JETP Lett. 38, 525–528 (1983).
- V. L. Bratman, N. S. Ginzburg, and M. I. Petelin, "Nonlinear theory of stimulated wave scattering by relativistic electron beams," Sov. Phys. JETP 49, 469–475 (1979); L. A. Vainshtein, "Type-O relativistic electron devices," Sov. Phys. Tech. Phys. 24, 625–633 (1979); Y. L. Bolomolov, V. L. Bratman, N. S. Ginzburg, M. I. Petelin, and A. D. Yanakovsky, "Nonstationary generation in free-electron lasers," Opt. Commun. 36, 209–212 (1981).
- R. Bonifacio, C. Pellegrini, and L. M. Narducci, "Collective instabilities and high-gain regime in a free-electron laser," Opt. Commun. 50, 373 (1984).
- J. B. Murphy, C. Pellegrini, and R. Bonifacio, "Collective instability of a free-electron laser including space charge and harmonics," Brookhaven National Laboratory Rep. BNL-34156 (1984).
- M. J. Madey, "Simulated emission of bremsstrahlung in a periodic magnetic field," J. Appl. Phys. 42, 1906–1913 (1971).
- F. Hopf, P. Meystre, G. T. Moore, and M. O. Scully, "Nonlinear theory of free-electron devices," in Novel Sources of Coherent Radiation, S. F. Jacobs, M. Sargent III, and M. O. Scully, eds. (Addison-Wesley, Reading, Mass., 1978), pp. 41–114; N. M. Kroll, "The free-electron laser as a traveling-wave amplifier," in Novel Sources of Coherent Radiation, S. F. Jacobs, M. Sargent III, and M. O. Scully, eds. (Addison-Wesley, Reading, Mass., 1978), pp. 115–156; W. B. Colson, "One-body analysis of free-electron lasers," in Novel Sources of Coherent Radiation, S. F. Jacobs, M. Sargent III, and M. O. Scully, eds. (Addison-Wesley, Reading, Mass., 1978), pp. 157–196.
- G. Dattoli and A. Renieri, "FEL quantum aspects," in J. Phys. (Paris) 44, 126–136 (1983); W. Becker and J. K. Mclver, "Quantum description of free-electron lasers," J. Phys. (Paris) 44, 289–311 (1983).
- R. Bonifacio and F. Casagrande, "Instabilities and quantum initiation in the free-electron laser," Opt. Commun. 50, 251–255 (1984).
- A classical analysis of the FEL oscillator startup has been carried out in Ref. 13 that introduces an incoherent contribution to the driving current in the Maxwell equations.
- P. Sprangle, C. M. Tang, and I. B. Bernstein, "Initiation of a pulsed-beam free-electron-laser oscillator," Phys. Rev. Lett. 50, 1775–1778 (1983); "Evolution of spontaneous and coherent radiation in the free-electron laser oscillator," Phys. Rev. A 28, 2300–2309 (1983).
- J. M. J. Madey and D. A. G. Deacon, "Free electron lasers," in Cooperative Effects in Matter and Radiation, C. M. Bowden, D. W. Howgate, and H. R. Robl, eds. (Plenum, New York, 1977), pp. 313–334.
- R. Bonifacio and F. Casagrande, "A model for superradiance and superfluorescence in free-electron lasers," Lett. Nuovo Cimento 37, 39–47 (1983).
- C. Pellegrini, "Physics of the free-electron laser," in Free-Electron Lasers, S. Martellucci and N. A. Chester, eds. (Plenum, New York, 1983), pp. 91–119; W. B. Colson, "Free-electron wave and particle dynamics," Free-Electron Lasers, S. Martellucci and N. A. Chester, eds. (Plenum, New York, 1983), pp. 189–209.
- R. Bonifacio, F. Casagrande, and G. Casati, "Cooperative and chaotic transition of a free-electron laser Hamiltonian model," Opt. Commun. 40, 219–223 (1982).
- R. Bonifacio, F. Casagrande, and G. Casati, "Cooperative and chaotic effects in a Hamiltonian model of the free-electron laser," in Evolution of Order and Chaos, H. Haken, ed. (Springer-Verlag, Berlin, 1982).
- R. Bonifacio, F. Casagrande, G. Casati, and S. Celi, "Chaotic and cooperative effects in a free-electron laser Hamiltonian model," in Coherence and Quantum Optics V, L. Mandel and E. Wolf, eds. (Plenum, New York, 1984), pp. 801–810.
- A. Bambini and A. Renieri, "The free electron laser: a single particle classical model," Lett. Nuovo Cimento 21, 399–404 (1978).
- W. Becker and J. K. Mclver, "Fully quantized many-particle theory of a free-electron laser," Phys. Rev. A 27, 1030–1043 (1983).
- R. J. Glauber, in Laser Handbook, F. T. Arecchi and E. O. Schulz-Dubois, eds. (North`Holland, Amsterdam, 1972), pn 1–43.

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.