OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 10 — Oct. 1, 2003
  • pp: 2203–2214

Fluorescence correlation spectroscopy on a mirror

H. Rigneault and P-F. Lenne  »View Author Affiliations

JOSA B, Vol. 20, Issue 10, pp. 2203-2214 (2003)

View Full Text Article

Acrobat PDF (373 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fluorescence correlation spectroscopy when fluorescent nanoemitters are diffusing in the vicinity of a dielectric mirror is studied both theoretically and experimentally. We demonstrate that two important effects occur when the confocal detection volume is located on the mirror’s surface. First, the count rate per emitter is significantly enhanced owing to control of spontaneous emission and enhancement of the excitation field. Second, interference fringes in the excitation beam give rise to a new characteristic time in the photocurrent’s autocorrelation function. This new time is found to be independent of the transverse excitation field’s beam waist and permits accurate measurement of diffusion coefficients without any <i>a priori</i> knowledge of the confocal volume geometry.

© 2003 Optical Society of America

OCIS Codes
(170.1790) Medical optics and biotechnology : Confocal microscopy
(180.1790) Microscopy : Confocal microscopy
(230.4040) Optical devices : Mirrors
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(310.1620) Thin films : Interference coatings

H. Rigneault and P-F. Lenne, "Fluorescence correlation spectroscopy on a mirror," J. Opt. Soc. Am. B 20, 2203-2214 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. W. E. Moerner and L. Kador, “Optical detection and spectroscopy of single molecules in a solid,” Phys. Rev. Lett. 62, 2535–2538 (1989).
  2. W. E. Moerner and M. Orrit, “Illuminating single molecules in condensed matter,” Science 283, 1670–1676 (1999).
  3. S. Nie and R. N. Zare, “Optical detection of single molecules,” Annu. Rev. Biophys. Biomol. Struct. 26, 567–596 (1997).
  4. A. J. Meixner, “Optical single-molecule detection at room temperature,” Adv. Photochem. 24, 1–59 (1998).
  5. X. S. Xie and J. K. Trautman, “Optical studies of single molecule at room temperature,” Annu. Rev. Phys. Chem. 49, 441–480 (1998).
  6. J. Enderlein, W. P. Ambrose, P. M. Goodwin, and R. A. Keller, “Fluorescence detection of single molecules applicable to small volume assays,” in Microsystem Technology: A Powerful Tool for Biomolecular Studies, M. Köhler, T. Mejevaia, and I. P. Saluz, eds. (Birkhaüser, Basel, Switzerland, 1999), pp. 311–329.
  7. S. Weiss, “Fluorescence spectroscopy of single biomolecules,” Science 283, 1676–1683 (1999).
  8. W. P. Ambrose, P. M. Goodwin, J. H. Jett, A. Van Orden, J. H. Werner, and R. A. Keller, “Single molecule fluorescence spectroscopy at ambient temperature,” Chem. Rev. (Washington, D.C.) 99, 2929–2956 (1999).
  9. Y. Ishii and T. Yaganida, “Single molecule detection in life science,” Single Molec. 1, 5–14 (2000).
  10. R. A. Keller, W. P. Ambrose, A. A. Arias, H. Cai, S. R. Emory, P. M. Goodwin, and J. H. Jett, “Analytical applications of single-molecule detection,” Anal. Chem. 74, 316A–324A (2002).
  11. R. Rigler, M. Orrit, and T. Basche, Single Molecule Spectroscopy (Springer-Verlag, Berlin, 2001).
  12. C. Zander, J. Enderlein, and R. A. Keller, Single Molecule Detection in Solution (Wiley-VCH, Berlin, 2002).
  13. E. L. Elson and D. Magde, “Fluorescence correlation spectroscopy. I. Conceptual basis and theory,” Biopolymers 13, 1–27 (1974).
  14. W. W. Webb, “Applications of fluorescence correlation spectroscopy,” Q. Rev. Biophys. 9, 49–68 (1976).
  15. R. Rigler and E. S. Elson, Fluorescence Correlation Spectroscopy (Springer-Verlag, Berlin, 2001).
  16. P. Schwille, “Fluorescence correlation spectroscopy and its potential for intracellular applications,” Cell. Biochem. Biophys. 34, 383–408 (2001).
  17. Y. Chen, J. D. Muller, P. T. So, and E. Gratton, “The photon counting histogram in fluorescence fluctuation spectroscopy,” Biophys. J. 77, 553–567 (1999).
  18. P. Kask, K. Palo, D. Ullman, and K. Gall, “Fluorescence intensity distribution analysis and its application in biomolecular detection technology,” Proc. Natl. Acad. Sci. U.S.A. 96, 13, 756–13, 761 (1999).
  19. K. Palo, U. Mets, S. Jager, P. Kask, and K. Gall, “Fluorescence intensity multiple distribution analysis: concurrent determination of diffusion times and molecular brightness,” Biophys. J. 79, 2858–2866 (2000).
  20. Y. Chen, J. D. Muller, Q. Ruan, and E. Gratton, “Molecular brightness characterization of EGFP in vivo by fluorescence fluctuation spectroscopy,” Biophys. J. 82, 133–144 (2002).
  21. P. M. Goodwin, M. E. Johnson, J. C. Martin, W. P. Ambrose, B. L. Marrone, J. H. Jett, and R. A. Keller, “Rapid sizing of individual fluorescently stained DNA fragments by flow cytometry,” Nucleic Acids Res. 21, 803–806 (1993).
  22. M. Eigen and R. Rigler, “Sorting single molecules: application to diagnostics and evolutionary biotechnology,” Proc. Natl. Acad. Sci. U.S.A. 91, 5740–5747 (1994).
  23. J. G. Rarity, S. C. Kitson, and P. R. Tapster, “Single photon sources and applications,” in Confined Photon Systems, Fundamentals and Applications, J. M. G. H. Benisty, R. Houdré, J. Rarity, and C. Weisbuch, eds. (Springer-Verlag, Berlin, 1999), p. 352.
  24. C. H. Bennett, G. Brassard, and A. K. Eckert, “Quantum cryptography,” Sci. Am. 267, 26 (1992).
  25. C. Brunel, B. Lounis, P. Tamarat, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83, 2722–2725 (1999).
  26. E. Moreau, I. Robert, L. Manin, V. Thierry-Mieg, J. M. Gérard, and I. Abram, “Quantum cascade of photons in semiconductor quantum dots,” Phys. Rev. Lett. 87, 183601 (2001).
  27. A. Beveratos, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Non-classical radiation from diamond nonocrystals,” Phys. Rev. A 64, 061802 (2001).
  28. B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature 407, 491–493 (2000).
  29. M. Orrit and J. Bernard, “Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal,” Phys. Rev. Lett. 65, 2716–2719 (1990).
  30. N. F. van Hulst, M. F. Garcia-Parajo, M. H. Moers, J. A. Veerman, and A. G. Ruiter, “Near-field fluorescence imaging of genetic material: toward the molecular limit,” J. Struct. Biol. 119, 222–231 (1997).
  31. T. Wilson, Confocal Microscopy (Academic, San Diego, Calif., 1990).
  32. T. Ruckstuhl, J. Enderlein, S. Jung, and S. Seeger, “Forbidden light detection from singles molecules,” Anal. Chem. 72, 2117–2123 (2000).
  33. I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett. 63, 2174–2176 (1993).
  34. H. Rigneault, F. Lemarchand, and A. Sentenac, “Dipole ra-diation into grating structures,” J. Opt. Soc. Am. A 17, 1048–1058 (2000).
  35. F. Lemarchand and H. Rigneault, “Light emission from europium chelates located in crossed grating structures,” J. Opt. 4, S115–S118 (2002).
  36. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  37. H. Benisty, J. M. Gérard, R. Houdré, J. G. Rarity, and C. Weisbuch, Confined Photon Systems, Fundamentals and Applications (Springer-Verlag, Berlin, 1999).
  38. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81, 1110–1113 (1998).
  39. D. G. Deppe, C. Lei, C. C. Lin, and D. L. Huffaker, “Spontaneous emission from planar microstructures,” J. Mod. Opt. 41, 325–344 (1994).
  40. S. Haroche, “Cavity quantum electrodynamics,” in Fundamental Systems in Quantum Optics, J. Dalibard, J. M. Raimond, and J. Zinn-Justin, eds. (North-Holland, Amsterdam, 1992), p. 767.
  41. C. Begon, H. Rigneault, P. Jonsson, and J. G. Rarity, “Spontaneous emission control with planar dielectric structures: an asset for ultrasensitive fluorescence analysis,” Single Molec. 1, 207–214 (2000).
  42. P. F. Lenne, E. Etienne, and H. Rigneault, “Subwavelength patterns and high detection efficiency in fluorescence correlation spectroscopy using photonic structures,” Appl. Phys. Lett. 80, 4106–4108 (2002).
  43. P. Schwille, F. J. Meyer-Almes, and R. Rigler, “Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution,” Biophys. J. 72, 1878–1886 (1997).
  44. P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, “Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation,” Biophys. J. 77, 2251–2265 (1999).
  45. S. T. Hess and W. W. Webb, “Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy,” Biophys. J. 83, 2300–2317 (2002).
  46. D. E. Koppel, D. Axelrod, J. Schlessinger, E. L. Elson, and W. W. Webb, “Dynamics of fluorescence marker concentration as a probe of mobility,” Biophys. J. 16, 1315–1329 (1976).
  47. H. Rigneault and S. Monneret, “Modal analysis of spontaneous emission in a planar microcavity,” Phys. Rev. A 54, 2356–2368 (1996).
  48. A. Belarouci, B. Jacquier, P. Moretti, S. Robert, and H. Rigneault, “Praseodymium-doped planar multidielectric microcavities: induced lifetime changes over the emission spectrum,” J. Opt. Soc. Am. B 18, 832–838 (2001).
  49. H. Quian and E. L. Elson, “Analysis of confocal laser-microscope optics for 3-D fluorescence correlation spectroscopy,” Appl. Opt. 30, 1185–1195 (1991).
  50. J. Enderlein, “Theoretical study of detection of a dipole emitter through an objective with high numerical aperture,” Opt. Lett. 25, 634–636 (2000).
  51. R. Rigler, U. Mets, J. Widengren, and P. Kask, “Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion,” Eur. Biophys. J. 22, 169–175 (1993).
  52. H. Asai and T. Ando, “Fluorescence correlation spectroscopy illuminated by standing exciting light waves,” J. Phys. Soc. Jpn. 40, 1527–1528 (1976).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited