OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 11 — Nov. 1, 2003
  • pp: 2262–2269

Active compensation of improper waveguide coupling through vertical-cavity surface-emitting laser electronic beam shaping

M. Jungo, D. Erni, and W. Baechtold  »View Author Affiliations

JOSA B, Vol. 20, Issue 11, pp. 2262-2269 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (623 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a new asymmetric drive scheme for vertical-cavity surface-emitting lasers (VCSELs) that is expected to permit the active compensation of misalignment between laser beam and waveguide. Simulations performed with a VCSEL integrated spatiotemporal advanced simulator simulation tool indicate that driving the laser with two orthogonal, individually addressable contacts may improve coupling efficiency by selective excitation of modes with given azimuthal distributions. Besides improved and more-stable coupling efficiency, significantly lower noise levels that result from reduced mode partition noise are observed, which significantly enhance the performance of digital transmission systems. Such electronic beam shaping from the driver side may drastically reduce the system’s costs by relaxing its fabrication tolerances.

© 2003 Optical Society of America

OCIS Codes
(060.2380) Fiber optics and optical communications : Fiber optics sources and detectors
(060.4510) Fiber optics and optical communications : Optical communications
(140.2020) Lasers and laser optics : Diode lasers
(140.3300) Lasers and laser optics : Laser beam shaping
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers
(270.2500) Quantum optics : Fluctuations, relaxations, and noise

M. Jungo, D. Erni, and W. Baechtold, "Active compensation of improper waveguide coupling through vertical-cavity surface-emitting laser electronic beam shaping," J. Opt. Soc. Am. B 20, 2262-2269 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Eitel, S. J. Fancey, H. P. Gaugel, K. H. Gulden, W. Baechtold, and M. R. Taghizadeh, “Highly uniform vertical-cavity surface-emitting lasers integrated with microlens arrays,” IEEE Photonics Technol. Lett. 12, 459–461 (2000). [CrossRef]
  2. R. Agnew, “Fast measuring system boosts VCSEL testing,” Europhotonics 7(3), 38–40 (2002).
  3. G. M. Yang, M. H. MacDougal, and P. D. Dapkus, “Ultralow threshold current verical-cavity surface-emitting lasers obained with selective oxidation,” Electron. Lett. 31, 886–888 (1995). [CrossRef]
  4. R. Michalzik, P. Schnitzer, U. Fiedler, D. Wiedenmann, and K. J. Ebeling, “High-bit-rate data transmission with short wavelength oxidized VCSELs: toward bias-free operation,” IEEE J. Sel. Top. Quantum Electron. 3, 396–404 (1997). [CrossRef]
  5. J. Heinrich, E. Zeeb, and K. Ebeling, “Butt-coupling efficiency of VCSEL’s into multimode fibers,” IEEE Photon. Technol. Lett. 9, 1555–1557 (1997). [CrossRef]
  6. M. Jungo, D. Erni, and W. Baechtold, “VISTAS: a comprehensive system-oriented spatiotemporal 2D VCSEL model,” IEEE J. Sel. Top. Quantum Electron. (to be published).
  7. A. Valle, J. Sarma, and K. A. Shore, “Spatial holeburning effects on the dynamics of vertical cavity surface-emitting laser diodes,” IEEE J. Quantum Electron. 31, 1423–1431 (1995). [CrossRef]
  8. J. Y. Law, “Mode-partition noise in vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 9, 437–439 (1997). [CrossRef]
  9. Y. Satuby and M. Orenstein, “Mode-coupling effects on the small-signal modulation of multitransverse-mode vertical-cavity semiconductor lasers,” IEEE J. Quantum Electron. 35, 944–954 (1999). [CrossRef]
  10. S. F. Yu, W. N. Wong, P. Shum, and E. H. Li, “Theoretical analysis of modulation response and second-order harmonic distortion in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 32, 2139–2147 (1996). [CrossRef]
  11. J. Dellunde, A. Valle, L. Pesquera, and K. A. Shore, “Transverse-mode selection and noise properties of external-cavity vertical cavity surface-emitting lasers including multiple-reflection effects,” J. Opt. Soc. Am. B 16, 2131–2139 (1999). [CrossRef]
  12. R. Mueller, A. Klehr, A. Valle, J. Sarma, and K. A. Shore, “Effects of spatial hole burning on polarization dynamics in edge-emitting and vertical-cavity surface-emitting laser diodes,” Semicond. Sci. Technol. 11, 587–596 (1996). [CrossRef]
  13. J. Mulet and S. Balle, “Transverse mode dynamics in VCSELs: spatio-temporal vs. modal expansion descriptions,” Phys. Rev. A 66, 053802 (2002). [CrossRef]
  14. A. Valle, “Selection and modulation of high-order transverse modes in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 34, 1924–1932 (1998). [CrossRef]
  15. J. Dellunde, M. C. Torrent, J. M. Sancho, and K. A. Shore, “Statistics of transverse mode turn-on dynamics in VCSEL’s,” IEEE J. Quantum Electron. 33, 1197–1204 (1997). [CrossRef]
  16. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C—The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, Cambridge, 1997), p. 965.
  17. M. Jungo, D. Erni, and W. Baechtold, “Quasi-analytic steady-state solution of VCSEL rate equations including spatial hole burning and carrier diffusion losses,” Int. J. Numer. Modelling 16(2), 143–159 (2003). [CrossRef]
  18. T. Christen, S. Odermatt, M. Jungo, D. Erni, and W. Baechtold, “Verilog—an implementation of an efficient spatiotemporal VCSEL model for system optimizations,” Microwave Opt. Technol. Lett. (to be published).
  19. M. Jungo, “Spatiotemporal vertical-cavity surface-emitting laser model for advanced simulations of optical links,” Ph.D dissertation 14982 (Swiss Federal Institute of Technology, Zurich, Switerland, 2003).
  20. From M. Jungo; check “VISTAS” at http://sourceforge.net.
  21. R. E. Wagner and W. J. Tomlinson, “Coupling efficiency of optics in single-mode fiber components,” Appl. Opt. 21, 2671–2688 (1982). [CrossRef] [PubMed]
  22. J. W. Goodman, Introduction to Fourier Optics, 2nd ed., Electrical and Computer Engineering Series (McGraw-Hill, New York, 1996), p. 441.
  23. N. Delen and B. Hooker, “Free-space beam propagation between arbitrarily oriented planes based on full diffraction theory: a fast Fourier transform approach,” J. Opt. Soc. Am. A 15, 857–867 (1998). [CrossRef]
  24. L. Zei, S. Ebers, J. R. Kropp, and K. Petermann, “Mode partition noise of multimode VCSEL’s due to spatial filtering,” presented at the 26th European Conference on Optical Communication, Munich, Germany, September 3–7 (2002).
  25. H. Martinsson, J. Bengtsson, M. Ghisoni, and A. Larsson, “Monolithic integration of vertical-cavity surfaceemitting laser and diffractive optical element for advanced beam shaping,” IEEE Photon. Technol. Lett. 11, 503–505 (1999). [CrossRef]
  26. S. P. Levitan, T. P. Kurzweg, P. J. Marchand, M. A. Rempel, D. M. Chiarulli, J. A. Martinez, J. M. Bridgen, C. Fan, and F. B. McCormick, “Chatoyant: a computer-aided-design tool for free-space optoelectronic systems,” Appl. Opt. 37, 6078–6092 (1998). [CrossRef]
  27. W.-H. Cheng, M.-T. Sheen, C.-P. Chien, H.-L. Chang, and J.-H. Kuang, “Reduction of fiber alignment shifts in semiconductor laser module packaging,” J. Lightwave Technol. 18, 842–848 (2000). [CrossRef]
  28. C. F. R. Mateus, C. H. Chang, and C. J. Chang-Hasnain, “Widely tunable torsional optical filter,” IEEE Photon. Technol. Lett. 14, 819–821 (2002). [CrossRef]
  29. T. P. Kurzweg, S. P. Levitan, J. A. Martinez, P. J. Marchand, M. T. Shomsky, and D. M. Chiarulli, “Optical propagation methodologies for optical MEM systems,” presented at the Third International Conference on Modeling and Simulation of Microsystems, San Diego, Calif., March 27–29, 2000.
  30. M. I. Cohen, A. A. Allerman, K. D. Choquette, and C. Jagadish, “Electrically steerable lasers using wide-aperture VCSELs,” IEEE Photon Technol. Lett. 13, 544–546 (2001). [CrossRef]
  31. L. G. Zei, S. Ebers, J. R. Kropp, and K. Petermann, “Noise performance of multimode VCSELs,” J. Lightwave Technol. 19, 884–892 (2001). [CrossRef]
  32. M. Jungo, D. Erni, and W. Baechtold, “2D VCSEL model for investigation of dynamic fiber coupling and spatially filtered noise,” IEEE Photon Technol. Lett. 15, 3–5 (2003). [CrossRef]
  33. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995), p. 594.
  34. R. Olshansky, P. Hill, V. Lanzisera, and W. Powazinik, “Frequency response of 1.3μm InGaAsP high speed semiconductor lasers,” IEEE J. Quantum Electron. 23, 1410–1418 (1987). [CrossRef]
  35. M. Jungo, D. Erni, F. M. d. Sopra, and W. Baechtold, “Scaling-effects on vertical-cavity surface-emitting lasers static and dynamic behavior,” J. Appl. Phys. 91, 5550–5557 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited