OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 11 — Nov. 1, 2003
  • pp: 2274–2284

Design of photonic crystal waveguides for evanescent coupling to optical fiber tapers and integration with high-Q cavities

Paul E. Barclay, Kartik Srinivasan, and Oskar Painter  »View Author Affiliations

JOSA B, Vol. 20, Issue 11, pp. 2274-2284 (2003)

View Full Text Article

Acrobat PDF (1096 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a novel scheme based on evanescent guided-wave coupling for optically interfacing between conventional fiber-optic and planar photonic crystal devices such as waveguides and resonant cavities. By considering the band structure of bulk photonic crystal slabs, we analyze the k space properties of a linear defect waveguide and establish a set of design rules to ensure efficient evanescent coupling with optical fiber tapers. These rules are used to design a waveguide in a square-lattice photonic crystal. The coupling efficiency is calculated with a coupled-mode theory incorporating the finite-difference time-domain-calculated uncoupled modes of the fiber taper and photonic crystal waveguide. On the basis of this coupled-mode theory, 95% power transfer from the fiber taper to the photonic crystal waveguide is possible over a coupling length of 80 lattice periods and with a bandwidth of 1.5% of the center wavelength. The integration of this waveguide with a photonic crystal defect resonant cavity is also presented, thus showing the usefulness of the combined fiber taper and photonic crystal waveguide system for efficient, optical fiber-based probing of optical elements based on planar photonic crystal technologies.

© 2003 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides

Paul E. Barclay, Kartik Srinivasan, and Oskar Painter, "Design of photonic crystal waveguides for evanescent coupling to optical fiber tapers and integration with high-Q cavities," J. Opt. Soc. Am. B 20, 2274-2284 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
  2. P. S. J. Russell, D. M. Atkin, and T. A. Birks, in Microcavities and Photonic Bandgaps: Physics and Application, J. Warrby and C. Weisbuch, eds. (Kluwer Academic, Dordrecht, The Netherlands, 1996), pp. 203–218.
  3. D. M. Atkin, P. S. J. Russell, T. A. Birks, and P. J. Roberts, “Photonic band structure of guided Bloch modes in high index films fully etched through with periodic microstructure,” J. Mod. Opt. 43, 1035–1053 (1996).
  4. M. Kanskar, P. Paddon, V. Pacradoui, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. Mackenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438–1440 (1997).
  5. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejaki, “Guided modes in photonic crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
  6. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
  7. M. Lončar, D. Nedeljković, T. Doll, J. Vučković, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
  8. O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1824 (1999).
  9. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711–713 (1999).
  10. N. Stefanou and A. Modinos, “Impurity bands in photonic insulators,” Phys. Rev. B 57, 12127–12133 (1998).
  11. S. Olivier, C. Smith, M. Rattier, H. Benisty, C. Weisbuch, T. Krauss, R. Houdré, and U. Oesterlé, “Miniband transmission in a photonic crystal coupled-resonator optical waveguide,” Opt. Lett. 26, 1019–1021 (2001).
  12. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature (London) 407, 608–610 (2000).
  13. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Theoretical analysis of channel drop tunneling processes,” Phys. Rev. B 59, 15882–15892 (1999).
  14. G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics and normal-mode-coupling in semiconductor microcavities,” Rev. Mod. Phys. 71, 1591–1639 (1999).
  15. S. John and K. Busch, “Quantum electrodynamics near a photonic band gap: photon bound states and dressed atoms,” Phys. Rev. Lett. 64, 2418–2421 (1990).
  16. J. Vučković, M. Lončar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavites for cavity QED,” Phys. Rev. E 65, 016608 (2002).
  17. Y. Yamamoto and S. Machida, “Microcavity semiconductor laser with enhanced spontaneous emission,” Phys. Rev. A 44, 657–668 (1991).
  18. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. I. Glu, “A quantum dot single-photon turnstile device,” Science 290, 2282–2285 (2000).
  19. E. Moreau, I. Robert, J. M. Gerard, I. Abram, L. Manin, and V. Thierry-Mieg, “Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities,” Appl. Phys. Lett. 79, 2865–2867 (2001).
  20. Y. Xu, R. K. Lee, and A. Yariv, “Adiabatic coupling between conventional dielectric waveguides and waveguides with discrete translational symmetry,” Opt. Lett. 25, 755–757 (2000).
  21. A. Mekis and J. D. Joannopoulos, “Tapered couplers for efficient interfacing between dielectric and photonic crystal waveguides,” J. Lightwave Technol. 19, 861–865 (2001).
  22. S. G. Johnson, P. Bienstman, M. A. Skorobogatiy, M. Ibanescu, E. Lidorikis, and J. D. Joannopoulos, “The adiabatic theorem and a continuous coupled-mode theory for efficient taper transitions in photonic crystals,” Phys. Rev. E 66, 066608 (2002).
  23. O. Mitomi, K. Kasaya, and H. Miyazawa, “Design of a single-mode tapered waveguide for low-loss chip-to-fiber coupling,” IEEE J. Quantum Electron. 30, 1787–1793 (1994).
  24. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. V. Daele, I. Moerman, S. Vertuyft, K. D. Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38, 949–955 (2002).
  25. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
  26. W. Kuang, C. Kim, A. Stapleton, and J. O’Brien, “Grating-assisted coupling of optical fibers and photonic crystal waveguides,” Opt. Lett. 27, 1604–1606 (2002).
  27. P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, “Experimental demonstration of evanescent coupling from optical fibre tapers to photonic crystal waveguides,” IEE Electron. Lett. 39, 842–844 (2003).
  28. M. Cai, O. Painter, and K. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000).
  29. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature (London) 421, 925–928 (2003).
  30. J. C. Slater, Microwave Electronics (Dover, New York, 1969).
  31. W.-P. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A 11, 963–983 (1994).
  32. C. M. de Sterke, D. G. Salinas, and J. E. Sipe, “Coupled-mode theory for light propagation through deep nonlinear gratings,” Phys. Rev. E 54, 1969–1989 (1996).
  33. N. A. R. Bhat and J. E. Sipe, “Optical pulse propagation in nonlinear photonic crystals,” Phys. Rev. E 64, 056604 (2001).
  34. S. Mookherjea and A. Yariv, “Second-harmonic generation with pulses in a coupled-resonator optical waveguide,” Phys. Rev. E 65, 026607 (2002).
  35. K. Sakoda, Optical Properties of Photonic Crystals (Springer, New York, 2001), pp. 14–19.
  36. A. A. Barybin and V. A. Dmitriev, Modern Electrodynamics and Coupled-Mode Theory (Rinton, Princeton, N.J., 2002).
  37. H. A. Haus, W. P. Huang, and A. W. Snyder, “Coupled-mode formulations,” Opt. Lett. 14, 1222–1224 (1989).
  38. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, New York, 1983).
  39. W. P. Huang and H. A. Haus, “Power exchange in grating-assisted couplers,” J. Lightwave Technol. 7, 920–924 (1989).
  40. A. Yariv, Optical Electronics, 4th ed. (Saunders, Orlando, Fla., 1991).
  41. P. Paddon and J. F. Young, “Two-dimensional vector-coupled-mode theory for textured planar waveguides,” Phys. Rev. B 61, 2090–2101 (2000).
  42. H.-Y. Ryu, S.-H. Kim, H.-G. Park, J.-K. Hwang, Y.-H. Lee, and J.-S. Kim, “Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode,” Appl. Phys. Lett. 80, 3883–3885 (2002).
  43. K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal nanocavities in two-dimensional slab waveguides,” Opt. Exp. 10, 670–684 (2002), http://www.opticsexpress.org.
  44. S. Kawakami, “Analytically solvable model of photonic crystal structures and novel phenomena,” J. Lightwave Technol. 20, 1644–1650 (2002).
  45. P. Yeh and H. F. Taylor, “Contradirectional frequency-selectice couplers for guided-wave optics,” Appl. Opt. 19, 2848–2855 (1980).
  46. In addition to the weak coupling between this mode and the fiber taper, higher-order odd slab modes may make coupling in this region of k space impractical. Nonetheless, the calculations shown here demonstrate the importance of a mode’s transverse Fourier components.
  47. O. Painter, K. Srinivasan, and P. E. Barclay, “Wannier-like equation for the resonant cavity modes of locally perturbed photonic crystals,” Phys. Rev. B 68, 035214 (2003).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited