OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 11 — Nov. 1, 2003
  • pp: 2285–2291

Annular Bragg defect mode resonators

Jacob Scheuer and Amnon Yariv  »View Author Affiliations

JOSA B, Vol. 20, Issue 11, pp. 2285-2291 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (300 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose and analyze a new type of a resonator in an annular geometry that is based on a single defect surrounded by radial Bragg reflectors on both sides. We show that the conditions for efficient mode confinement are different from those of the conventional Bragg waveguiding in a rectangular geometry. A simple and intuitive approach to the design of optimal radial Bragg reflectors is proposed and employed, yielding chirped gratings. Small bending radii and strong control over the resonator dispersion are possible by the Bragg confinement. A design compromise between large free-spectral-range requirements and fabrication tolerances is suggested.

© 2003 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(130.2790) Integrated optics : Guided waves
(230.5750) Optical devices : Resonators

Jacob Scheuer and Amnon Yariv, "Annular Bragg defect mode resonators," J. Opt. Soc. Am. B 20, 2285-2291 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14, 483–485 (2002). [CrossRef]
  2. B. E. Little, “Ultracompact Si-SiO2 microring resonator optical dropping filter,” Opt. Lett. 23, 1570–1572 (1998). [CrossRef]
  3. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: a Signal-Processing Approach (Wiley, New York, 1999).
  4. M. Toda, “Single-mode behavior of a circular grating for potential disk-shaped DFB lasers,” IEEE J. Quantum Electron. 26, 473–481 (1990). [CrossRef]
  5. X. H. Zheng and S. Lacroix, “Mode coupling in circular-cylindrical system and its application to fingerprint resonators,” J. Lightwave Technol. 8, 1509–1516 (1990). [CrossRef]
  6. T. Erdogan and D. G. Hall, “Circularly symmetric distributed feedback laser: an analysis,” J. Appl. Phys. 68, 1435–1444 (1990). [CrossRef]
  7. T. Erdogan and D. G. Hall, “Circularly symmetric distributed feedback laser: coupled mode treatment of TE vector fields,” IEEE J. Quantum Electron. 28, 612–623 (1992). [CrossRef]
  8. M. A. Kaliteevski, R. A. Abram, V. V. Nikolaev, and G. S. Sokolovski, “Bragg reflectors for cylindrical waves,” J. Mod. Opt. 46, 875–890 (1999). [CrossRef]
  9. C. Wu, M. Svilans, M. Fallahi, T. Makino, J. Glinski, C. Maritan, and C. Blaauw, “Optically pumped surface-emitting DFB GaInAsP/InP lasers with circular grating,” Electron. Lett. 27, 1819–1821 (1991). [CrossRef]
  10. D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Hourdré, and U. Oesterle, “High-finesse disk microcavity based on a circular Bragg reflector,” Appl. Phys. Lett. 73, 1314–1316 (1998). [CrossRef]
  11. A. Shaw, B. Roycroft, J. Hegarty, D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, C. J. M. Smith, R. Stanely, R. Hourdré, and U. Oesterle, “Lasing properties of disk microcavity based on circular Bragg reflector,” Appl. Phys. Lett. 75, 3051–3053 (1999). [CrossRef]
  12. D. Ochoa, R. Hourdré, M. Ilegems, H. Benisty, T. F. Krauss, and C. J. M. Smith, “Diffraction of cylindrical Bragg reflectors surrounding an in-place semiconductor microcavity,” Phys. Rev. B 61, 4806–4812 (2000). [CrossRef]
  13. J. Scheuer and A. Yariv, “Two-dimensional optical ring resonators based on radial Bragg resonance,” Opt. Lett. 28, 1528–1530 (2003). [CrossRef] [PubMed]
  14. S. Kim, H. Ryu, H. Park, G. Kim, Y. Choi, Y. Lee, and J. Kim, “Two-dimensional photonic crystal hexagonal waveguide ring laser,” Appl. Phys. Lett. 81, 2499–2501 (2002). [CrossRef]
  15. See for example, A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University, New York, 1997).
  16. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68, 1196–1201 (1978). [CrossRef]
  17. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljačić, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–779 (2001). [CrossRef] [PubMed]
  18. M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. QE-11, 75–83 (1975). [CrossRef]
  19. L. Djaloshinski and M. Orenstein, “Disk and ring microcavity lasers and their concentric coupling,” IEEE J. Quantum Electron. 35, 737–744 (1999). [CrossRef]
  20. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14, 823–825 (1989). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited