OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 12 — Dec. 1, 2003
  • pp: 2484–2491

Nonlinear refractive index of a glass plate used for beam transformation and its application to Z scans

M. J. Paz-Alonso, H. Michinel, and S. Bará  »View Author Affiliations

JOSA B, Vol. 20, Issue 12, pp. 2484-2491 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (181 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a simple theory based on the method of moments for fitting experimental measurements of optical nonlinearities obtained by the Z-scan technique. Our method provides a simple and intuitive image for Gaussian beam propagation through a nonlinear optical plate: a linear transformation that consists of a displacement and a contraction of the beam waist. We study cubic nonlinearities of samples of arbitrary thickness. We also consider, for thin samples, higher-order nonlinearities such as cubic–quintic nonlinearities and the effect of nonlinear absorption.

© 2003 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.4400) Nonlinear optics : Nonlinear optics, materials

M. J. Paz-Alonso, H. Michinel, and S. Bará, "Nonlinear refractive index of a glass plate used for beam transformation and its application to Z scans," J. Opt. Soc. Am. B 20, 2484-2491 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Boyd, Nonlinear Optics (Academic, London, 1992).
  2. N. Bloembergen, The Principles of Nonlinear Optics (World Scientific, Singapore, 1996).
  3. Y. R. Shen, Nonlinear Optics (Wiley, London, 2002).
  4. G. P. Agrawal and R. W. Boyd, Contemporary Nonlinear Optics: Quantum Electronics—Principles and Applications (Academic, London, 1992).
  5. G. I. Stegeman, E. M. Wright, N. Finlayson, R. Zanoni, and C. T. Seaton, “Third order nonlinear integrated optics,” J. Lightwave Technol. 6, 953–970 (1988). [CrossRef]
  6. G. I. Stegeman and E. M. Wright, “All-optical waveguide switching,” Opt. Quantum Electron. 22, 95–122 (1990). [CrossRef]
  7. J. V. Moloney, Nonlinear Optical Materials (Springer, New York, 1998).
  8. T. Suhara and M. Fujimura, Nonlinear Optics Waveguide Devices (Springer-Verlag, Berlin, 2003).
  9. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. V. Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990). [CrossRef]
  10. M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n2 measurements,” Opt. Lett. 14, 955–957 (1989). [CrossRef] [PubMed]
  11. F. Yoshino, S. Polyakov, M. Liu, and G. Stegeman, “Z-scan and P-scan: new measurements of the nonlinear refractive index of single crystal polymer PTS at 1600 nm,” in Conference on Lasers and Electro-Optics CLEO 2000, Vol. 39 of OSA Topics in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), pp. 150–151.
  12. T. Xia, D. J. Hagan, M. Sheik-Bahae, and E. W. Van Stryland, “Eclipsing Z-scan measurement of λ/104 wave-front distortion,” Opt. Lett. 19, 317–319 (1994). [CrossRef] [PubMed]
  13. S. L. Guo, J. Yan, L. Xu, B. Gu, X. Z. Fan, H. T. Wang, and N. B. Ming, “Second Z-scan in materials with nonlinear refraction and nonlinear absorption,” J. Opt. A 4, 504–508 (2002). [CrossRef]
  14. R. E. Samad and N. Dias Vieira, Jr., “Analytical description of Z-scan on-axis intensity based on the Huygens–Fresnel principle,” J. Opt. Soc. Am. B 15, 2742–2747 (1998). [CrossRef]
  15. A. Eriksson, M. Lindgren, S. Svensson, and P. O. Arntzen, “Numerical analysis of Z-scan experiments by use of a mode expansion,” J. Opt. Soc. Am. B 15, 810–816 (1998). [CrossRef]
  16. V. M. Pérez-García, P. Torres, J. J. García-Ripoll, and H. Michinel, “Moment analysis of paraxial propagation in a nonlinear graded index fibre,” J. Opt. B 2, 353–358 (2000). [CrossRef]
  17. Th. Busch, J. I. Cirac, V. M. Pérez-García, and P. Zoller, “Stability and collective excitations of a two-component Bose–Einstein condensed gas: a moment approach,” Phys. Rev. A 56, 2978–2983 (1997). [CrossRef]
  18. E. Kutnetsov, A. Zakharov, and E. Vladimir, Wave Collapse (World Scientific, Singapore, 1999).
  19. C. Sulem and P. L. Sulem, The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse (Springer-Verlag, Berlin, 1999).
  20. D. Weaire, B. S. Wherrett, D. A. B. Miller, and S. D. Smith, “Effect of low-power nonlinear refraction on laser beam propagation in InSb,” Opt. Lett. 4, 331–333 (1979). [CrossRef] [PubMed]
  21. G. Fang, Y. Mo, Y. Song, Y. Wang, C. Li, and L. Song, “Nonlinear refractive properties of organometallic fullerene-C60 derivatives,” Opt. Commun. 205, 337–341 (2002). [CrossRef]
  22. D. Anderson, “Variational approach to nonlinear pulse propagation in optical fibers,” Phys. Rev. A 6, 3135–3145 (1983). [CrossRef]
  23. H. Michinel, “Non-linear propagation of Gaussian beams in planar graded-index waveguides: a variational approach,” Pure Appl. Opt. 4, 701–708 (1995). [CrossRef]
  24. P. B. Chapple, J. Staromlynska, and R. G. McDuff, “Z-scan studies in the thin and the thick sample limits,” J. Opt. Soc. Am. B 11, 975–982 (1994). [CrossRef]
  25. M. Sheik-Bahae, A. A. Said, D. J. Hagan, M. J. Soileau, and E. W. Van Stryland, “Nonlinear refraction and optical limiting in thick media,” Opt. Eng. 30, 1228–1235 (1991). [CrossRef]
  26. R. Quintero-Torres, F. Carreto-Parra, Z. Navarrete-Meza, and L. Zambrano-Valencia, “Straightforward representation of a thick nonlinear optical material, with linear and nonlinear absorption,” Mod. Phys. Lett. B 15, 796–803 (2001). [CrossRef]
  27. J. A. Hermann, T. Bubner, T. J. McKay, P. J. Wilson, J. Staromlynska, A. Eriksson, M. Lindgren, and S. Svensson, “Optical limiting capability of thick nonlinear absorbers,” J. Nonlinear Opt. Phys. Mater. 8, 253–275 (1999). [CrossRef]
  28. P. Chen, D. A. Oulianov, I. V. Tomov, and P. M. Rentzepis, “Two-dimensional z-scan for arbitrary beam shape and sample thickness,” J. Appl. Phys. 85, 7043–7050 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited