OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 2 — Feb. 1, 2003
  • pp: 292–301

Correlation theory of polarization mode dispersion in optical fibers

Qiang Lin and Govind P. Agrawal  »View Author Affiliations

JOSA B, Vol. 20, Issue 2, pp. 292-301 (2003)

View Full Text Article

Acrobat PDF (201 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A general theory is used to describe the correlation properties of polarization mode dispersion (PMD) in a birefringent, linear, dispersive medium such as optical fibers. The theory includes the effects of frequency dependence of birefringence on all orders, and it is capable of providing statistical information about second- and higher-order correlations among the polarization and PMD vectors. We apply the general theory to study pulse broadening induced by different-order PMD and PMD-induced pulse distortion through the third- and fourth-order temporal moments (related to skewness and flatness, respectively). Our analytic results are in good agreement with numerical simulations.

© 2003 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4510) Fiber optics and optical communications : Optical communications
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(260.2030) Physical optics : Dispersion
(260.5430) Physical optics : Polarization

Qiang Lin and Govind P. Agrawal, "Correlation theory of polarization mode dispersion in optical fibers," J. Opt. Soc. Am. B 20, 292-301 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. C. D. Poole, “Polarization effects in lightwave systems,” in Optical Fiber Telecommunications III A, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Calif., 1997), Chap. 6.
  2. H. Kogelnik, R. Jopson, and L. Nelson, “Polarization-mode dispersion,” in Optical Fiber Telecommunications IV B, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Calif., 2002), Chap. 15.
  3. P. Ciprut, B. Gisin, N. Gisin, R. Passy, J. P. Von der Weid, F. Prieto, and C. W. Zimmer, “Second-order polarization mode dispersion: impact on analog and digital transmissions,” J. Lightwave Technol. 16, 757-771 (1998).
  4. C. D. Poole and R. E. Wagner, “Phenomenological approach to polarisation dispersion in long single-mode fibers,” Electron. Lett. 22, 1029-1030 (1986).
  5. G. J. Foschini and C. D. Poole, “Statistical theory of polarization dispersion in single mode fibers,” J. Lightwave Technol. 9, 1439-1456 (1991).
  6. G. J. Foschini, R. M. Jopson, L. E. Nelson, and H. Kogelnik, “The statistics of PMD-induced chromatic fiber dispersion,” J. Lightwave Technol. 17, 1560-1565 (1999).
  7. G. J. Foschini, L. E. Nelson, R. M. Jopson, and H. Kogelnik, “Probability densities of second-order polarization mode dispersion including polarization dependent chromatic fiber dispersion,” IEEE Photon. Technol. Lett. 12, 293-295 (2000).
  8. G. J. Foschini, L. E. Nelson, R. M. Jopson, and H. Kogelnik, “Statistics of second-order PMD depolarization,” J. Lightwave Technol. 19, 1882-1886 (2001).
  9. M. Karlsson and J. Brentel, “Autocorrelation function of the polarization-mode dispersion vector,” Opt. Lett. 24, 939-941 (1999).
  10. M. Shtaif, A. Mecozzi, and J. A. Nagel, “Mean-square magnitude of all orders of polarization mode dispersion and the relation with the bandwidth of the principal states,” IEEE Photon. Technol. Lett. 12, 53-55 (2000).
  11. J. P. Gordon and H. Kogelnik, “PMD fundamentals: polar-ization mode dispersion in optical fibers,” Proc. Natl. Acad. Sci. USA 97, 4541-4550 (2000).
  12. G. P. Agrawal, Fiber Optic Communication Systems, 3rd ed. (Wiley, New York, 2002), Chap. 2.
  13. C. D. Poole, J. H. Winters, and J. A. Nagel, “Dynamical equation for polarization dispersion,” Opt. Lett. 16, 372-374 (1991).
  14. F. Curti, B. Daino, G. de Marchis, and F. Matera, “Statistical treatment of the evolution of the principal states of polarization in single-mode fibers,” J. Lightwave Technol. 8, 1162-1166 (1990).
  15. N. Gisin and J. P. Pellaux, “Polarization mode dispersion: time versus frequency domains,” Opt. Commun. 89, 316-323 (1992).
  16. H. Risken, The Fokker-Planck Equation, 2nd ed. (Springer-Verlag, New York, 1989).
  17. C. W. Gardiner, Handbook of Stochastic Methods, 2nd ed. (Springer-Verlag, New York, 1985).
  18. P. K. A. Wai and C. R. Menyuk, “Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 14, 148-157 (1996).
  19. M. Karlsson, J. Brentel, and P. A. Andrekson, “Long-term measurement of PMD and polarization drift in installed fibers,” J. Lightwave Technol. 18, 941-951 (2000).
  20. M. Karlsson, “Polarization mode dispersion-induced pulse broadening in optical fibers,” Opt. Lett. 23, 688-690 (1998).
  21. H. Sunnerud, M. Karlsson, and P. A. Andrekson, “Analytical theory for PMD-compensation,” IEEE Photon. Technol. Lett. 12, 50-52 (2000).
  22. H. Bu¨low, “System outage probability due to first- and second-order PMD,” IEEE Photon. Technol. Lett. 10, 696–698 (1998).
  23. M. C. Wang and G. E. Uhlenbeck, “On the theory of the Brownian motion II,” in Selected Papers on Noise and Stochastic Processes, N. Wax, ed. (Dover, New York, 1954), pp. 113–132.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited