OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 5 — May. 1, 2003
  • pp: 1066–1074

Advances in laser cooling of thulium-doped glass

C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia  »View Author Affiliations

JOSA B, Vol. 20, Issue 5, pp. 1066-1074 (2003)

View Full Text Article

Acrobat PDF (392 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recent developments in cooling thulium-doped heavy-metal fluoride glass are presented. Thulium-doped fluorozirconate (ZBLANP) is cooled to 19 K below ambient with a multiple-pass pump scheme. This represents over an order of magnitude increase from the previously reported single-pass geometry. The results agree with a simple model for anti-Stokes fluorescence cooling that includes considerations of quantum efficiency and parasitic heating mechanisms. Issues relating to a practical optical refrigerator are examined, including a general model for the effects of multiple pump passes.

© 2003 Optical Society of America

OCIS Codes
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(120.6810) Instrumentation, measurement, and metrology : Thermal effects
(140.3320) Lasers and laser optics : Laser cooling
(160.5690) Materials : Rare-earth-doped materials
(300.2530) Spectroscopy : Fluorescence, laser-induced

C. W. Hoyt, M. P. Hasselbeck, M. Sheik-Bahae, R. I. Epstein, S. Greenfield, J. Thiede, J. Distel, and J. Valencia, "Advances in laser cooling of thulium-doped glass," J. Opt. Soc. Am. B 20, 1066-1074 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, “Observation of laser-induced fluorescent cooling of a solid,” Nature 377, 500–503 (1995).
  2. J. L. Clark and G. Rumbles, “Laser cooling in the condensed phase by frequency up-conversion,” Phys. Rev. Lett. 76, 2037–2040 (1996).
  3. P. Pringsheim, “Zwei Bemerkungen über den Unterschied von Lumineszenz und Temperaturstrahlung,” Z. Phys. 57, 739–746 (1929).
  4. L. Landau, “On the thermodynamics of photoluminescence,” J. Phys. (Moscow) 10, 503–506 (1946).
  5. A. Kastler, “Quelues suggestions concernant la production optique et la detection optique d’une mégalité de population des niveaux de quantification spatiale des atomes: application à l’expérience de Stern et Gerlach et à la résonance magnetique,” J. Phys. Radium 11, 255–265 (1950).
  6. C. W. Hoyt, M. Sheik-Bahae, R. I. Epstein, B. C. Edwards, and J. E. Anderson, “Observation of anti-Stokes fluorescence cooling in thulium-doped glass,” Phys. Rev. Lett. 85, 3600–3603 (2000).
  7. J. Fernandez, A. Mendioroz, A. J. Garcia, R. Balda, and J. L. Adam, “Anti-Stokes laser-induced internal cooling of Yb3+-doped glasses,” Phys. Rev. B 62, 3213–3217 (2000).
  8. B. C. Edwards, J. E. Anderson, R. I. Epstein, G. L. Mills, and A. J. Mord, “Demonstration of a solid-state optical cooler: an approach to cryogenic refrigeration,” J. Appl. Phys. 86, 6489–6493 (1999).
  9. C. E. Mungan, M. I. Buchwald, B. C. Edwards, R. I. Epstein, and T. R. Gosnell, “Internal laser cooling of Yb3+-doped glass measured between 100 and 300 K,” Appl. Phys. Lett. 71, 1458–1460 (1997).
  10. A. Rayner, M. Hirsch, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Distributed laser refrigeration,” Appl. Opt. 40, 5423–5429 (2001).
  11. T. R. Gosnell, “Laser cooling of a solid by 65 K starting from room temperature,” Opt. Lett. 24, 1041–1043 (1999).
  12. S. R. Bowman and C. E. Mungan, “New materials for optical cooling,” Appl. Phys. B 71, 807–811 (2000).
  13. R. I. Epstein, J. J. Brown, B. C. Edwards, and A. Gibbs, “Measurements of optical refrigeration in ytterbium-doped crystals,” J. Appl. Phys. 90, 4815–4819 (2001).
  14. A. Mendioroz, J. Fernández, M. Voda, M. Al-Saleh, and R. Balda, “Anti-Stokes laser cooling in Yb3+-doped KPb2Cl5 crystal,” Opt. Lett. 27, 1525–1527 (2002).
  15. A. N. Oraevsky, “Cooling of semiconductors by laser radiation,” J. Russ. Laser Res. 17, 471–479 (1996).
  16. L. A. Rivlin and A. A. Zadernovsky, “Laser cooling of semiconductors,” Opt. Commun. 139, 219–222 (1997).
  17. M. Sheik-Bahae, M. P. Hasselbeck, and R. I. Epstein, “Prospects for laser cooling in semiconductors,” in Quantum Electronics and Laser Science (QELS), Postconference Digest, Vol. 74, Trends in Optics and Photonics (Optical Society of America, Washington, D.C., 2002), p. 103.
  18. J. L. Clark, P. F. Miller, and G. Rumbles, “Red edge photophysics of ethanolic rhodamine 101 and the observation of laser cooling in the condensed phase,” J. Phys. Chem. A 102, 4428–4437 (1998).
  19. H. Gauck, T. H. Gfroerer, M. J. Renn, E. A. Cornell, and K. A. Bertness, “External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure,” Appl. Phys. A 64, 143–147 (1997).
  20. E. Finkeißen, M. Potemski, P. Wyder, L. Vina, and G. Weimann, “Cooling of a semiconductor by luminescence up-conversion,” Appl. Phys. Lett. 75, 1258–1260 (1999).
  21. L. Wetenkamp, G. F. West, and H. Tobben, “Optical properties of rare earth-doped ZBLAN glasses,” J. Non-Cryst. Solids 140, 35–40 (1992).
  22. R. G. Smart, J. N. Carter, A. C. Tropper, and D. C. Hanna, “Continuous-wave oscillation of Tm3+-doped fluorozirconate fibre lasers at around 1.47 μm, 1.9 μm and 2.3 μm when pumped at 790 nm,” Opt. Commun. 82, 563–570 (1991).
  23. C. B. Layne and M. J. Weber, “Multiphonon relaxation of rare-earth ions in beryllium-fluoride glass,” Phys. Rev. B 16, 3259–3261 (1977).
  24. C. B. Layne, W. H. Lowdermilk, and M. J. Weber, “Multiphonon relaxation of rare-earth ions in oxide glasses,” Phys. Rev. B 16, 10–20 (1977).
  25. W. J. Miniscalco, “Optical and electronic properties of rare earth ions in glasses,” in Rare Earth Doped Fiber Lasers and Amplifiers, M. J. F. Digonnet, ed. (Marcel Dekker, New York, 1993), Chap. 2.
  26. R. F. Barron, Cryogenic Systems, Monographs on Cryogenics, 2nd ed. (Oxford U. Press, New York, 1985).
  27. N. H. Balshaw, Practical Cryogenics: An Introduction to Laboratory Cryogenics, 1st ed. (Oxford Instruments, Oxon, England, 1996).
  28. B. C. Edwards, M. I. Buchwald, and R. I. Epstein, “Development of the Los Alamos solid-state optical refrigerator,” Rev. Sci. Instrum. 69, 2050–2055 (1998).
  29. C. W. Hoyt, M. Sheik-Bahae, and M. Ebrahimzadeh, “High-power picosecond optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 27, 1543–1545 (2002).
  30. J. M. Jewell, C. Askins, and I. D. Aggarwal, “Interferometric method for concurrent measurement of thermo-optic and thermal expansion coefficients,” Appl. Opt. 30, 3656–3660 (1991).
  31. S. M. Lima, J. A. Sampaio, T. Catunda, A. C. Bento, L. C. M. Miranda, and M. L. Baesso, “Mode-mismatched thermal lens spectrometry for thermo-optical properties measurement in optical glasses: a review,” J. Non-Cryst. Solids 273, 215–227 (2000).
  32. T. B. Carlson, S. M. Denzer, T. R. Greenlee, R. P. Groschen, R. W. Peterson, and G. M. Robinson, “Vibration-resistant direct-phase-detecting optical interferometers,” Appl. Opt. 36, 7162–7171 (1997).
  33. R. Kristal and R. W. Peterson, “Bragg cell heterodyne interferometery of fast plasma events,” Rev. Sci. Instrum. 47, 1357–1359 (1976).
  34. G. M. Robinson, D. M. Perry, and R. W. Peterson, “Optical interferometry of surfaces,” Sci. Am. 265, 66 (1991).
  35. It is also possible that higher doping leads to fluorescence quenching because of the concomitant increased impurity concentration.
  36. A. Brenier, C. Pedrini, B. Moine, J. L. Adam, and C. Pledel, “Fluorescence mechanisms in Tm3+ singly doped and Tm3+, Ho3+ doubly doped indium-based fluoride glasses,” Phys. Rev. B 41, 5364–5371 (1990).
  37. J. McDougall, D. B. Hollis, and M. J. P. Payne, “Spectroscopic properties of Tm3+ in ZBLAN fluoride glass. Part 2. Judd-Ofelt parameters,” Phys. Chem. Glasses 36, 139–140 (1995).
  38. M. J. Weber, “Laser excited fluorescence spectroscopy in glass,” in Laser Spectroscopy of Solids, Vol. 49 of Topics in Applied Physics, 2nd ed. (Springer-Verlag, Berlin, 1986), pp. 189–239.
  39. D. L. Huber, “Dynamics of incoherent transfer,” in Laser Spectroscopy of Solids, Vol. 49 of Topics in Applied Physics, 2nd ed. (Springer-Verlag, Berlin, 1986), pp. 83–111.
  40. G. P. Morgan and W. M. Yen, “Optical energy transfer in insulators,” in Laser Spectroscopy of Solids II, Vol. 49 of Topics in Applied Physics, 1st ed. (Springer-Verlag, Berlin, 1989), pp. 77–122.
  41. See Ref. 28; 1.46 W from intracavity to Ti:sapphire laser.
  42. G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, and R. I. Epstein, “Determination of spectral linewidths by Voigt profiles in Yb3+-doped fluorozirconate glasses,” Phys. Rev. B 57, 7673–7678 (1998).
  43. B. Heeg, G. Rumbles, A. Khizhnyak, and P. A. DeBarber, “Comparative intra- versus extra-cavity laser cooling efficiencies,” J. Appl. Phys. 91, 3356–3362 (2002).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited