OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 20, Iss. 8 — Aug. 1, 2003
  • pp: 1761–1768

Highly sensitive detection of trace gases using the time-resolved frequency downchirp from pulsed quantum-cascade lasers

Michael T. McCulloch, Erwan L. Normand, Nigel Langford, Geoffrey Duxbury, and D. A. Newnham  »View Author Affiliations

JOSA B, Vol. 20, Issue 8, pp. 1761-1768 (2003)

View Full Text Article

Acrobat PDF (230 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A spectrometer using a pulsed, 10.25-μm-wavelength, thermoelectrically cooled quantum-cascade distributed-feedback laser has been developed for sensitive high-resolution infrared absorption spectroscopy. This spectrometer is based upon the use of the almost linear frequency downchirp of up to 75 GHz produced by a square current drive pulse. The behavior of this downchirp has been investigated in detail using high-resolution Fourier-transform spectrometers. The downchirp spectrometer provides a real-time display of the spectral fingerprint of molecular gases over a wave-number range of up to 2.5 cm−1. Using an astigmatic Herriott cell with a maximum path length of 101 m and a 5-kHz pulse repetition rate with 12-s averaging, absorption lines having an absorbance of less than 0.01 (an absorption of less than 1%) may be measured.

© 2003 Optical Society of America

OCIS Codes
(010.1120) Atmospheric and oceanic optics : Air pollution monitoring
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(300.6260) Spectroscopy : Spectroscopy, diode lasers
(300.6340) Spectroscopy : Spectroscopy, infrared
(300.6390) Spectroscopy : Spectroscopy, molecular

Michael T. McCulloch, Erwan L. Normand, Nigel Langford, Geoffrey Duxbury, and D. A. Newnham, "Highly sensitive detection of trace gases using the time-resolved frequency downchirp from pulsed quantum-cascade lasers," J. Opt. Soc. Am. B 20, 1761-1768 (2003)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilagems, E. Gini, and H. Melchior, “Continuous wave operation of a mid-infrared semiconductor laser at room temperature,” Science 295, 301–305 (2002).
  2. A. A. Kosterev and F. K. Tittel, “Chemical sensors based on quantum cascade lasers,” IEEE J. Quantum Electron. 38, 582–591 (2002).
  3. G. Duxbury, Infrared Vibration-Rotation Spectroscopy From Free Radicals to the Infrared Sky (Wiley, New York, 2000).
  4. C. R. Webster, R. D. May, C. A. Trimble, R. G. Chave, and J. Kendall, “Aircraft (ER-2) laser infrared absorption spectrometer (ALIAS) for in situ stratospheric measurements of HCl, CH4, NO2, and HNO3” Appl. Opt. 33, 454–472 (1994).
  5. D. C. Scott, R. L. Herman, C. R. Webster, R. D. May, G. J. Flesch, and E. J. Moyer, “Airborne laser infrared absorption spectrometer-II for in situ atmospheric measurements of N2O, CH4, CO, HCl, and NO2 from balloon or remotely piloted aircraft platforms,” Appl. Opt. 38, 4609–4622 (1999).
  6. C. R. Webster, G. J. Flesch, D. C. Scott, J. E. Swanson, R. D. May, W. S. Woodward, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Quantum-cascade laser measurements of stratospheric methane and nitrous oxide,” Appl. Opt. 40, 321–326 (2001).
  7. K. Namjou, S. Cai, E. A. Whittaker, J. Faist, C. Gmachl, F. Capasso, D. L. Sivco, and A. Y. Cho, “Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser,” Opt. Lett. 23, 219–221 (1998).
  8. A. A. Kosterev, R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, and A. Y. Cho, “Trace gas detection in ambient air with a thermoelectrically cooled, pulse operated quantum cascade distributed feedback (QC-DFB) laser,” Appl. Opt. 39, 6866–6872 (2000).
  9. E. Normand, G. Duxbury, and N. Langford, “Characterisation of the spectral behaviour of pulsed quantum cascade lasers using a high resolution Fourier transform infrared spectrometer,” Opt. Commun. 197, 115–120 (2001).
  10. E. L. Normand, M. T. McCulloch, G. Duxbury, and N. Langford, “Fast, real-time spectrometer based on a pulsed quantum-cascade laser,” Opt. Lett. 28, 16–18 (2003).
  11. G. R. Fleming, Chemical Applications of Ultrafast Spectroscopy (Oxford University, London, 1986).
  12. R. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, New York, 1965).
  13. J. B. McManus, P. L. Kebabian, and M. S. Zahniser, “Astigmatic mirror multipass absorption cells for long-path-length spectroscopy,” Appl. Opt. 34, 3336–3348 (1995).
  14. I. F. Howieson, “Near infrared tunable diode laser absorption spectrometer for trace gas detection,” Ph.D. thesis (University of Strathclyde, Glasgow, UK, 1997).
  15. Kolmar Technologies photovoltaic HgCdTe photodetector, bandwidth >100 MHz.
  16. Femto Messtechnik 1.1-GHz high-speed photodetector amplifier.
  17. W. J. Lafferty, J. P. Sattler, T. L. Worchesky, and K. J. Ritter, “Diode laser heterodyne spectroscopy on the ν4 and ν9 of 1, 1-difluoroethylene,” J. Mol. Spectrosc. 87, 416–428 (1981).
  18. W. Lewis-Bevan, A. J. Merer, M. C. L. Gerry, P. B. Davies, A. J. Morton-Jones, and P. A. Hamilton, “The high-resolution infrared spectrum of the 201 band of carbonyl fluoride: determination of the far infrared laser frequencies,” J. Mol. Spectrosc. 113, 458–471 (1985).
  19. E. A. Cohen and W. Lewis-Bevan, “Further measurements of the rotational spectrum of COF2: improved molecularconstants of the ground and ν2 states,” J. Mol. Spectrosc. 148, 378–384 (1991).
  20. I. S. Rothman, C. P. Rinsland, A. Goldman, T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R. R. Gamache, R. B. Wattson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanas, “The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition,” J. Quant. Spectrosc. Radiat. Transfer 60, 655–710 (1998).
  21. A. G. Maki and J. S. Wells, “Wavenumber calibration tables from heterodyne frequency measurements (version 1.3),” http://physics.nist.gov/wavenum (2003, February 4). Originally published as NIST Spec. Publ. 821 (National Institute of Standards and Technology Gaithersburg Md., 1987).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited