Inelastic interchannel collisions of pulses in optical fibers in the presence of third-order dispersion
JOSA B, Vol. 21, Issue 1, pp. 18-23 (2004)
http://dx.doi.org/10.1364/JOSAB.21.000018
Enhanced HTML Acrobat PDF (140 KB)
Abstract
We study the effect of third-order dispersion on the interaction between two solitons from different frequency channels in an optical fiber. The interaction may be viewed as an inelastic collision in which energy is lost to continuous radiation owing to nonzero third-order dispersion. We develop a perturbation theory with two small parameters: the third-order dispersion coefficient
© 2004 Optical Society of America
OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
Citation
Avner Peleg, Michael Chertkov, and Ildar Gabitov, "Inelastic interchannel collisions of pulses in optical fibers in the presence of third-order dispersion," J. Opt. Soc. Am. B 21, 18-23 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-1-18
Sort: Year | Journal | Reset
References
- G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1995).
- A. C. Newell and J. V. Moloney, Nonlinear Optics of Advanced Topics in the Interdisciplinary Mathematical Sciences Series (Addison-Wesley, Redwood City, Calif., 1992).
- G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, New York, 1997).
- V. I. Karpman and V. V. Solov’ev, “A perturbational approach to the 2-soliton systems,” Phys. D 3, 487–502 (1981). [CrossRef]
- J. P. Gordon, “Interaction forces among solitons in optical fibers,” Opt. Lett. 8, 596–598 (1983). [CrossRef] [PubMed]
- D. Anderson and M. Lisak, “Bandwidth limits due to mutual pulse interaction in optical soliton communication systems,” Opt. Lett. 11, 174–176 (1986). [CrossRef] [PubMed]
- L. F. Mollenauer, J. P. Gordon, and P. V. Mamyshev, “Solitons in high bit-rate, long-distance transmission,” in Optical Fiber Telecommunications III, I. P. Kaminov and T. L. Koch, eds. (Academic, San Diego, Calif., 1997), Chap. 12, Sect. V-B.
- H. A. Haus and W. S. Wong, “Solitons in optical communications,” Rev. Mod. Phys. 68, 423–444 (1996). [CrossRef]
- Y. Kodama and K. Nozaki, “Soliton interaction in optical fibers,” Opt. Lett. 12, 1038–1040 (1987). [CrossRef] [PubMed]
- T. Kano, “Normal form of nonlinear Schrödinger equation,” J. Phys. Soc. Jpn. 58, 4322–4328 (1989). [CrossRef]
- Y. Kodama and S. Wabnitz, “Reduction of soliton interaction forces by bandwidth limited amplification,” Electron. Lett. 27, 1931–1933 (1991). [CrossRef]
- Y. Kodama, M. Romagnoli, S. Wabnitz, and M. Midrio, “Role of third-order dispersion on soliton instabilities and interactions in optical fibers,” Opt. Lett. 19, 165–167 (1994). [CrossRef] [PubMed]
- M. Chertkov, Y. Chung, A. Dyachenko, I. Gabitov, I. Kolokolov, and V. Lebedev, “Shedding and interaction of solitons in weakly disordered optical fibers,” Phys. Rev. E 67, 036615 (2003). [CrossRef]
- Y. Kodama and A. V. Mikhailov, “Obstacles to asymptotic integrability,” in Algebraic Aspects to Integrable Systems, A. S. Fokas and I. M. Gelfand, eds. (Birkhäuser, Boston, 1997).
- Y. Kodama, “On integrable systems with higher-order corrections,” Phys. Lett. 107A, 245–249 (1985). [CrossRef]
- J. N. Elgin, “Soliton propagation in an optical fiber with 3rd-order dispersion,” Opt. Lett. 17, 1409–1410 (1992). [CrossRef]
- J. N. Elgin, T. Brabec, and S. M. J. Kelly, “A perturbative theory of soliton propagation in the presence of third order dispersion,” Opt. Commun. 114, 321–328 (1995). [CrossRef]
- T. P. Horikis and J. N. Elgin, “Soliton radiation in an optical fiber,” J. Opt. Soc. Am. B 18, 913–918 (2001). [CrossRef]
- D. J. Kaup, “Perturbation theory for solitons in optical fibers,” Phys. Rev. A 42, 5689–5694 (1990). [CrossRef] [PubMed]
- A. Peleg, M. Chertkov, and I. Gabitov, “Inter-channel interaction of optical solitons,” Phys. Rev. E 68, 026605 (2003). [CrossRef]
- The dimensionless z in Eq. (1) is z=x(αP_{0}/2), where x is the actual position, P_{0} is the peak soliton power, and α is the Kerr nonlinearity coefficient. The dimensionless retarded time is t=τ/τ_{0}, where τ is the retarded time and τ_{0} is the soliton width. The spectral width ν_{0} is given by ν_{0}= 1/(π^{2}τ_{0}), and the channel spacing is given by Δν= Ων_{0}. Ψ=E/P_{0}, where E is the actual electric field. The dimensionless second- and third-order dispersion coefficients are given by d=−1=β_{2}/(αP_{0}τ_{0}^{2}) and d_{3}= β_{3}/(3αP_{0}τ_{0}^{3}), where β_{2} and β_{3} are the second- and third-order chromatic dispersion coefficients, respectively.
- Effects of fiber losses can be neglected (see, for instance, Ref. 23) if values of Δν, β_{2}, β_{3}, and τ_{0} satisfy the following two conditions: τ_{0}≪β_{2}/γ and Δν≫(γτ_{0}^{2})/β_{3}.
- F. G. Omenetto, Y. Chung, D. Yarotski, T. Schaefer, I. Gabitov, and A. J. Taylor, “Phase analysis of nonlinear femtosecond pulse propagation and self-frequency shift in optical fibers,” Opt. Commun. 208, 191–196 (2002). [CrossRef]
- L. F. Mollenauer and P. V. Mamyshev, “Massive wavelength-division multiplexing with solitons,” IEEE J. Quantum Electron. 34, 2089–2102 (1998). [CrossRef]
- Y. Kodama, A. V. Mikhailov, and S. Wabnitz, “Input pulse optimization in wavelength-division-multiplexed soliton transmission,” Opt. Commun. 143, 53–56 (1997). [CrossRef]
- Note that it was found in Ref. 17 that even if the pulse launched into the fiber is not exactly of the form given by Eq. (3) it evolves into this form after a transient.
- L. F. Mollenauer, P. V. Mamyshev, and M. J. Neubelt, “Demonstration of soliton WDM transmission at 6 and 7× 10 Gbit/s, error free over transoceanic distances,” Electron. Lett. 32, 471–474 (1996). [CrossRef]
- L. F. Mollenauer and P. V. Mamyshev, “Wavelength-division-multiplexing channel energy self-equalization in a soliton transmission line by guiding filters,” Opt. Lett. 20, 1658–1660 (1996).
- P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, “Soliton at the zero-group-dispersion wavelength of a single-modal fiber,” Opt. Lett. 12, 628–630 (1987). [CrossRef] [PubMed]
- A. S. Gouveia-Neto, M. E. Faldon, and J. R. Taylor, “Solitons in the region of the minimum group-velocity dispersion of single-mode optical fibers,” Opt. Lett. 13, 770–772 (1988). [CrossRef] [PubMed]
- P. K. A. Wai, H. H. Chen, and Y. C. Lee, “Radiation by soli-tons at the zero group-dispersion wavelength of single-mode fibers,” Phys. Rev. A 41, 426–439 (1990). [CrossRef] [PubMed]
- M. Nakazawa, E. Yoshida, K. Suzuki, T. Kitoh, and M. Kawachi, “80 Gbit/s soliton data transmission over 500 km with unequal amplitude solitons for timing clock extraction,” Electron. Lett. 30, 1777–1778 (1994). [CrossRef]
- M. Nakazawa, K. Suzuki, E. Yoshida, E. Yamada, T. Kitoh, and M. Kawachi, “160 Gbit/s soliton data transmission over 200 km,” Electron. Lett. 31, 565–566 (1995). [CrossRef]
- M. Nakazawa, K. Suzuki, E. Yoshida, E. Yamada, T. Kitoh, and M. Kawachi, “160 Gbit/s (80 Gbit/s×2 channels) WDM soliton transmission over 10000 km using in-line synchronous modulation,” Electron. Lett. 35, 1358–1359 (1999). [CrossRef]
Cited By |
Alert me when this paper is cited |
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
Figures
Fig. 1 |
« Previous Article | Next Article »
OSA is a member of CrossRef.