OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 1 — Jan. 1, 2004
  • pp: 29–35

Measuring the above-threshold group-velocity dispersion and gain curvature of a semiconductor laser by pulse-propagation techniques

R. Gordon, A. P. Heberle, and J. R. A. Cleaver  »View Author Affiliations


JOSA B, Vol. 21, Issue 1, pp. 29-35 (2004)
http://dx.doi.org/10.1364/JOSAB.21.000029


View Full Text Article

Acrobat PDF (366 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The dispersive broadening of a single optical pulse traveling within a Fabry–Pérot semiconductor laser was measured for propagation over 58 round trips of the cavity, a distance of 352 mm. The interference between two copropagating pulses with variable relative phase (stabilized to within 2π×0.02 rad) was used to relate the group-velocity dispersion to the gain curvature. With both single- and double-pulse propagation measurements, the complex group-velocity dispersion (including gain curvature) was found to be 8.7+5.9i ps2/m at twice the laser-threshold bias current. When the laser bias was increased from 1.4 to 2 times the laser threshold, the gain curvature decreased by 2.8%, and the group-velocity dispersion showed less than 0.1% variation.

© 2004 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(140.5960) Lasers and laser optics : Semiconductor lasers
(320.7150) Ultrafast optics : Ultrafast spectroscopy

Citation
R. Gordon, A. P. Heberle, and J. R. A. Cleaver, "Measuring the above-threshold group-velocity dispersion and gain curvature of a semiconductor laser by pulse-propagation techniques," J. Opt. Soc. Am. B 21, 29-35 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-1-29


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. H. A. Haus, “Mode-locking of lasers,” IEEE J. Quantum Electron. 6, 1173–1185 (2000).
  2. G. Guekos, Photonic Devices for Telecommunications (Springer-Verlag, Berlin, 1999).
  3. K. L. Hall, G. Lenz, A. M. Darwish, and E. P. Ippen, “Sub-picosecond gain and index nonlinearities in InGaAsP diode lasers,” Opt. Commun. 111, 589–612 (1994).
  4. J. Mørk and A. Mecozzi, “Theory of the ultrafast optical response of active semiconductor waveguides,” J. Opt. Soc. Am. B 13, 1803–1816 (1996).
  5. B. Bauer, F. Henry, and R. Schimpe, “Gain stabilization of a semiconductor optical amplifier by distributed-feedback,” IEEE Photon. Technol. Lett. 6, 182–185 (1994).
  6. T. Hessler, S. Haacke, J. L. Pleumeekers, P. E. Selbmann, M. A. Dupertuis, B. Deveaud, R. A. Taylor, P. Doussiere, M. Bachmann, T. Ducellier, and J. Y. Emery, “Time-resolved relaxation oscillations in gain-clamped semiconductor optical amplifiers by pump and probe measurements,” Quantum Semiclassic. Opt. 9, 675–679 (1997).
  7. M. Bachmann, P. Doussiere, J. Y. Emery, R. NGo, F. Pommereau, L. Goldstein, G. Soulage, and A. Jourdan, “Polarisation-insensitive clamped-gain SOA with integrated spot-size convertor and DBR gratings for WDM applications at 1.55 μm wavelength,” Electron. Lett. 32, 2076–2078 (1996).
  8. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523–1528 (1999).
  9. H. Kuwatsuka, H. Shoji, M. Matsuda, and H. Ishikawa, “Nondegenerate four-wave mixing in long-cavity λ/4-shifted DFB laser using its lasing beam as pump beam,” IEEE J. Quantum Electron. 33, 2002–2010 (1997).
  10. J. W. D. Chi, K. A. Shore, and J. Le Bihan, “Highly nondegenerate four-wave mixing in uniform λ/4-shifted DFB lasers,” IEEE J. Quantum Electron. 33, 2011–2020 (1997).
  11. T. Simoyama, H. Kuwatsuka, B. E. Little, M. Matsuda, Y. Kotaki, and H. Ishikawa, “High-efficiency wavelength conversion using FWM in an SOA integrated DFB laser,” IEEE Photon. Technol. Lett. 12, 576–578 (2000).
  12. P. Borri, F. Romstad, W. Langbein, A. E. Kelly, J. Mørk, and J. M. Hvam, “Separation of coherent and incoherent nonlin-earities in a heterodyne pump–probe experiment,” Opt. Express 3, 107–112 (2000).
  13. B. W. Hakki and T. L. Paoli, “Gain spectra in GaAs double-heterostructure injection lasers,” J. Appl. Phys. 46, 1299–1306 (1975).
  14. M. P. Kesler and C. Harder, “Gain and index measurements in GaAlAs quantum-well lasers,” IEEE Photon. Technol. Lett. 2, 464–466 (1990).
  15. M. P. Kesler and E. P. Ippen, “Femtosecond time-domain measurements of group velocity dispersion in AlGaAs diode lasers,” Electron. Lett. 25, 640–642 (1989).
  16. M. Kauer, J. R. A. Cleaver, J. J. Baumberg, and A. P. Heberle, “Femtosecond dynamics in semiconductor lasers: dark pulse formation,” Appl. Phys. Lett. 72, 1626–1628 (1998).
  17. P. E. Selbmann, T. P. Hessler, J. L. Pleumeekers, M. A. Dupertuis, B. Deveaud, B. Dagens, and J. Y. Emery, “Observation of dark-pulse formation in gain-clamped semiconductor optical amplifiers by cross-gain modulation,” Appl. Phys. Lett. 75, 3760–3762 (1999).
  18. P. J. Delfyett, H. Shi, S. Gee, I. Nitta, J. C. Connolly, and G. A. Alphonse, “Joint time–frequency measurements of mode-locked semiconductor diode lasers and dynamics using frequency-resolved optical gating,” IEEE J. Quantum Electron. 35, 487–500 (1999).
  19. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, San Diego, 1995).
  20. J. Shah, “Ultrafast luminescence spectroscopy using sum frequency generation,” IEEE J. Quantum Electron. 24, 276–288 (1988).
  21. S. Haacke, R. A. Taylor, I. Bar-Joseph, M. J. S. P. Brasil, M. Hartig, and B. Deveaud, “Improving the signal-to-noise ratio of femtosecond luminescence upconversion by multichannel detection,” J. Opt. Soc. Am. B 15, 1410–1417 (1998).
  22. J. P. van der Ziel and R. A. Logan, “Dispersion of the group velocity refractive index in GaAs double heterostructure lasers,” IEEE J. Quantum Electron. 19, 164–168 (1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited