OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 10 — Oct. 1, 2004
  • pp: 1713–1721

Measurement of pressure-broadened, ultraweak transitions with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy

Nicola J. van Leeuwen and Andrew C. Wilson  »View Author Affiliations


JOSA B, Vol. 21, Issue 10, pp. 1713-1721 (2004)
http://dx.doi.org/10.1364/JOSAB.21.001713


View Full Text Article

Acrobat PDF (189 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a theoretical description of the ultrasensitive cavity-enhanced spectroscopic technique called noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE OHMS) for the case of transitions described by a Voigt line shape. The two levels of modulation used in NICE OHMS are treated with the standard theory for frequency modulation spectroscopy and a Fourier description of wavelength modulation spectroscopy. We compare predicted line shapes with experimental results for pressure-broadened transitions in molecular oxygen and show that our description can be used to determine the spectroscopic parameters. A key aspect of this research is the application of NICE OHMS to broad absorption features across a range of wavelengths, and etalon effects are shown to limit the detection sensitivity.

© 2004 Optical Society of America

OCIS Codes
(020.0020) Atomic and molecular physics : Atomic and molecular physics
(020.3690) Atomic and molecular physics : Line shapes and shifts
(300.0300) Spectroscopy : Spectroscopy
(300.6380) Spectroscopy : Spectroscopy, modulation

Citation
Nicola J. van Leeuwen and Andrew C. Wilson, "Measurement of pressure-broadened, ultraweak transitions with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy," J. Opt. Soc. Am. B 21, 1713-1721 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-10-1713


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. Ye, L. S. Ma, and J. L. Hall, “Sub-Doppler optical frequency reference at 1.064 μm by means of ultrasensitive cavity-enhanced frequency modulation spectroscopy of a C2HD overtone transition,” Opt. Lett. 21, 1000–1002 (1996).
  2. J. Ye, L. S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6–15 (1998).
  3. L. S. Ma, J. Ye, P. Dube, and J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16, 2255–2268 (1999).
  4. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15–17 (1980).
  5. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B: Photophys. Laser Chem. 32, 145–152 (1983).
  6. G. Gagliardi and L. Gianfrani, “Trace-gas analysis using diode lasers in the near-IR and long-path techniques,” Opt. Lasers Eng. 37, 509–520 (2002).
  7. A. S. C. Cheung, T. M. Ma, and H. B. Chen, “High-resolution cavity enhanced absorption spectroscopy using an optical cavity with ultra-high reflectivity mirrors,” Chem. Phys. Lett. 353, 275–280 (2002).
  8. K. Nakagawa, T. Katsuda, A. S. Shelkovnikov, M. de La- bachelerie, and M. Ohtsu, “Highly sensitive detection of molecular absorption using a high finesse optical cavity,” Opt. Commun. 107, 369–372 (1994).
  9. R. L. Smith, “Practical solutions of the lock-in detection problem for Lorentz and dispersion resonance signals,” J. Opt. Soc. Am. 61, 1015–1022 (1971).
  10. C. Ishibashi and H. Sasada, “Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66 μm tunable diode laser,” Jpn. J. Appl. Phys., Part 1 38, 920–922 (1999).
  11. C. Ishibashi and H. Sasada, “Near-infrared laser spectrometer with sub-Doppler resolution, high sensitivity, and wide tunability: a case study in the 1.65-μm region of CH3I spectrum,” J. Mol. Spectrosc. 200, 147–149 (2000).
  12. L. Gianfrani, R. W. Fox, and L. Hollberg, “Cavity-enhanced absorption spectroscopy of molecular oxygen,” J. Opt. Soc. Am. B 16, 2247–2254 (1999).
  13. G. Janik, C. B. Carlisle, and T. F. Gallagher, “Two-tone frequency-modulation spectroscopy,” J. Opt. Soc. Am. B 3, 1070–1074 (1986).
  14. D. E. Cooper and R. E. Warren, “Two-tone optical hetrodyne spectroscopy with diode lasers: theory of line shapes and experimental results,” J. Opt. Soc. Am. B 4, 470–480 (1987).
  15. P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry—an extensive scrutiny of the generation of signals,” Spectrochim. Acta, Part B 56, 1277–1354 (2001).
  16. The peak-normalized line shape can be converted to the standard-area normalized line shape by multiplication of the factor Re [w(iΔLG )](4 ln 2/pi)1/2 /ΔνLG.
  17. w(z)=exp (−z2)[1−erf (−iz)], where erf is the ordinary error function.
  18. N. J. van Leeuwen, J. C. Diettrich, and A. C. Wilson, “Periodically locked continuous-wave cavity ringdown spectroscopy,” Appl. Opt. 42, 3670–3677 (2003).
  19. C. Petridis, I. D. Lindsay, D. J. M. Stothard, and M. Ebrahimzadeh, “Mode-hop-free tuning over 80 GHz of an extended cavity diode laser without antireflection coating,” Rev. Sci. Instrum. 72, 3811–3815 (2001).
  20. R. W. Fox, National Institute for Standards and Technology, Boulder, Colorado (personal communication, 2002).
  21. R. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B: Photophys. Laser Chem. 31, 97–105 (1983).
  22. R. W. Fox, C. Oates, and L. Hollberg, “Stabilizing diode lasers to high finesse cavities,” in Cavity-Enhanced Spectroscopies (Academic, Amsterdam, 2002).
  23. R. G. DeVoe and R. G. Brewer, “Laser-frequency division and stabilization,” Appl. Phys. A: Solids Surf. 30, 2827–2829 (1984).
  24. S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, “Line shape analysis of Doppler broadened frequency-modulated line spectra,” J. Chem. Phys. 104, 2129–2135 (1996).
  25. L. S. Rothman, A. Barbe, D. C. Benner, L. R. Brown, C. Camy-Peyret, M. R. Carleer, K. Chance, C. Clerbaux, V. Dana, V. M. Devi, A. Fayt, J. M. Flaud, R. R. Gamache, A. Goldman, D. Jacquemart, K. W. Jucks, W. J. Lafferty, J. Y. Mandin, S. T. Massie, V. Nemtchinov, D. A. Newnham, A. Perrin, C. P. Rinsland, J. Schroeder, K. M. Smith, M. A. H. Smith, K. Tang, R. A. Toth, J. V. Auwera, P. Varanasi, and K. Yoshino, “The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001,” J. Quant. Spectrosc. Radiat. Transf. 82, 5–44 (2003).
  26. S. Yang, M. R. Canagaratna, S. K. Witonsky, S. L. Coy, J. I. Steinfeld, R. W. Field, and A. A. Kachanov, “Intensity measurements and collision-broadening coefficients for the oxygen A band measured by intracavity laser absorption spectroscopy,” J. Mol. Spectrosc. 201, 188–197 (2000).
  27. R. W. Fox and L. Hollberg, “Role of spurious reflections in ring-down spectroscopy,” Opt. Lett. 27, 1833–1835 (2002).
  28. An exhaustive effort to eliminate etalon effects for a single transition was not attempted because, in this study, we want to emphasize the practical limitations faced by spectroscopists who want to apply the technique to multiple transitions.
  29. N. C. Wong and J. L. Hall, “Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection,” J. Opt. Soc. Am. B 2, 1527–1533 (1985).
  30. N. J. van Leeuwen, H. G. Kjaergaard, D. L. Howard, and A. C. Wilson, “Measurement of ultraweak transitions in the visible region of molecular oxygen,” J. Mol. Spectrosc. (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited