OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 11 — Nov. 1, 2004
  • pp: 1953–1963

Adaptive optical coherence-domain reflectometry using photorefractive quantum wells

Leilei Peng, David D. Nolte, Ping Yu, and Michael R. Melloch  »View Author Affiliations

JOSA B, Vol. 21, Issue 11, pp. 1953-1963 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (288 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Adaptive optical-coherence-domain reflectometry (OCDR) is performed by use of an adaptive interferometer and homodyne detection. The adaptive element of the interferometer is a photorefractive quantum-well device in a two-wave mixing geometry. The mixing self-adaptively maintains constant relative phase between the signal and reference waves and dynamically compensates gross movements of the sample or optical components as well as image speckle. The application described here is used for laser ranging into and through turbid media. Adaptive OCDR is a bridge between conventional optical coherence tomography and adaptive holographic optical coherence imaging. The insertion loss for the adaptive performance is -15 dB, but adaptive OCDR has potential applications for coherence tomography under conditions of large target motion and low background. We also demonstrate its potential application for optoacoustics and laser-based ultrasound detection.

© 2004 Optical Society of America

OCIS Codes
(090.2880) Holography : Holographic interferometry
(160.5320) Materials : Photorefractive materials
(190.7070) Nonlinear optics : Two-wave mixing

Leilei Peng, David D. Nolte, Ping Yu, and Michael R. Melloch, "Adaptive optical coherence-domain reflectometry using photorefractive quantum wells," J. Opt. Soc. Am. B 21, 1953-1963 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. A. Swanson, D. Huang, M. R. Hee, J. G. Fujimoto, C. P. Lin, and C. A. Puliafito, “High-speed optical coherence domain reflectometry,” Opt. Lett. 17, 151–153 (1992). [CrossRef] [PubMed]
  2. R. C. Youngquist, S. Carr, and D. E. N. Davies, “Optical coherence-domain reflectometry: a new optical evaluation technique,” Opt. Lett. 12, 158–160 (1987). [CrossRef] [PubMed]
  3. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef] [PubMed]
  4. J. A. Rogers, A. G. Podoleanu, G. Dobre, D. A. Jackson, and F. W. Fitzke, “Topography and volume measurements of the optics nerve using en-face optical coherence tomography,” Opt. Express 9, 533–545 (2001). [CrossRef] [PubMed]
  5. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105 (1999). [CrossRef] [PubMed]
  6. P. Yu, M. Mustata, J. J. Turek, P. M. W. Frech, M. R. Melloch, and D. D. Nolte, “Holographic optical coherence imaging of tumor spheroids,” Appl. Phys. Lett. 83, 575–577 (2003). [CrossRef]
  7. D. D. Nolte, “Semi-insulating semiconductor heterostructures: optoelectronic properties and applications,” J. Appl. Phys. 85, 6259–6289 (1999). [CrossRef]
  8. Y. Ding, I. Lahiri, D. D. Nolte, G. J. Dunning, and D. M. Pepper, “Electric-field correlation of femtosecond pulses by use of a photoelectromotive-force detector,” J. Opt. Soc. Am. B 15, 2013–2017 (1998). [CrossRef]
  9. S. Stepanov, P. R. Montero, M. A. C. Flores, J. C. Mixcoatl, A. A. López, L. A. Carrasco, and M. S. Sánchez, “Interferometric applications of GaAs adaptive photo-EMF detectors,” J. Opt. Technol. 69, 428–431 (2002). [CrossRef]
  10. F. M. Davidson and L. Boutsikaris, “Homodyne detection using photorefractive materials as beamsplitters,” Opt. Eng. 29, 369–377 (1990). [CrossRef]
  11. J. Khoury, V. Ryan, C. Woods, and M. Cronin-Golomb, “Photorefractive optical lock-in detector,” Opt. Lett. 16, 1442–1444 (1991). [CrossRef] [PubMed]
  12. R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233–3235 (1991). [CrossRef]
  13. I. Rossomakhin and S. I. Stepanov, “Linear adaptive interferometers via diffusion recording in cubic photorefractive crystals,” Opt. Commun. 86, 199–204 (1991). [CrossRef]
  14. D. D. Nolte, T. Cubel, L. J. Pyrak-Nolte, and M. R. Melloch, “Adaptive beam combining and interferometry using photorefractive quantum wells,” J. Opt. Soc. Am. B 18, 195–205 (2001). [CrossRef]
  15. S. Balasubramanian, I. Lahiri, Y. Ding, M. R. Melloch, and D. D. Nolte, “Two-wave mixing dynamics and nonlinear hot-electron transport in transverse-geometry photorefractive quantum wells studied by moving gratings,” Appl. Phys. B 68, 863–869 (1999). [CrossRef]
  16. R. M. Brubaker, Q. N. Wang, and D. D. Nolte, “Nonlocal photorefractive screening from hot electron velocity saturation on semiconductors,” Phys. Rev. Lett. 77, 4249–4252 (1996). [CrossRef] [PubMed]
  17. R. M. Brubaker, Q. N. Wang, D. D. Nolte, E. S. Harmon, and M. R. Melloch, “Steady-state four-wave mixing in photorefractive quantum wells with femtosecond pulses,” J. Opt. Soc. Am. B 11, 1038–1044 (1994). [CrossRef]
  18. L. Lepetit, G. Cheriaux, and M. Joffre, “Linear techiques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467 (1995). [CrossRef]
  19. R. Jones, D. D. Nolte, and M. R. Melloch, “Adaptive femtosecond optical pulse combining,” Appl. Phys. Lett. 77, 3692–3694 (2000). [CrossRef]
  20. D. D. Nolte, ed., Photorefractive Effects and Materials, Electronic Materials: Science and Technology Series (Kluwer Academic, Dordrecht, The Netherlands, 1995).
  21. S. Webb, The Physics of Medical Imaging (Institute of Physics, University of Reading, Berkshine, UK, 1988).
  22. B. Chance, K. Kang, L. He, J. Weng, and E. Sevick, “Highly sensitive object location on tissue models with linear in-phase and anti-phase multi-element optical arrays in one and two dimensions,” Proc. Natl. Acad. Sci. (USA) 90, 3423 (1993). [CrossRef]
  23. A. Lev, Z. Kolter, and B. G. Sfez, “Ultrasound tagged light imaging in turbid media in a reflectance geometry,” Opt. Lett. 25, 378–380 (2000). [CrossRef]
  24. M. Hisaka, T. Sugiura, and S. Kawata, “Optical cross-sectional imaging with pulse ultrasound wave assistance,” J. Opt. Soc. Am. A 18, 1531–1534 (2001). [CrossRef]
  25. L. Wang and X. Zhao, “Ultrasound-modulated optical tomography of absorbing objects buries in dense tissue-simulating turbid media,” Appl. Opt. 36, 7727–7782 (1997). [CrossRef]
  26. I. Lahiri, L. J. Pyrak-Nolte, D. D. Nolte, M. R. Melloch, R. A. Kruger, G. D. Bacher, and M. B. Klein, “Laser-based ultrasound detection using photorefractive quantum wells,” Appl. Phys. Lett. 73, 1041–1043 (1998). [CrossRef]
  27. L. Peng, P. Yu, D. D. Nolte, and M. R. Melloch, “High-speed adaptive interferometer for optical coherence-domain reflectometry through turbid media,” Opt. Lett. 26, 396–398 (2003). [CrossRef]
  28. P. Yu, L. Peng, D. D. Nolte, and M. R. Melloch, “Ultrasound detection through turbid media,” Opt. Lett. 28, 819–821 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited