## Spectra of single-atom lasers

JOSA B, Vol. 21, Issue 11, pp. 2025-2034 (2004)

http://dx.doi.org/10.1364/JOSAB.21.002025

Acrobat PDF (412 KB)

### Abstract

We calculate the output spectrum of a single-atom laser in a microcavity across a wide range of operating conditions. We considered both three-level and four-level atomic level structures. We used a numerical routine to calculate spectra that is more efficient than others used previously. We found that the linewidth of a single-atom laser generally scales as the inverse of the photon number and that there is no pump value at which an abrupt change occurs that might locate a lasing threshold. For a three-level gain atom we found vacuum–Rabi splitting similar to that found by Loffler et al. [Phys. Rev. A **55**, 3923 (1997)] and used quantum trajectory theory to obtain a new interpretation of the results. For a four-level gain atom the vacuum–Rabi structure can appear at a small nonzero pump level and is maintained for large pumps, even when the intracavity photon number is larger than unity and the laser is on. We use the quantum trajectory approach to explain these results.

© 2004 Optical Society of America

**OCIS Codes**

(270.0270) Quantum optics : Quantum optics

(270.3430) Quantum optics : Laser theory

**Citation**

J. P. Clemens, P. R. Rice, and L. M. Pedrotti, "Spectra of single-atom lasers," J. Opt. Soc. Am. B **21**, 2025-2034 (2004)

http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-11-2025

Sort: Year | Journal | Reset

### References

- C. Ginzel, H.-J. Briegel, U. Martini, B. Englert, and A. Schenzle, “Quantum optical master equations: the one-atom laser,” Phys. Rev. A 48, 732–738 (1993).
- M. Loffler, G. M. Meyer, and H. Walther, “Spectral properties of the one-atom laser,” Phys. Rev. A 55, 3923–3930 (1997).
- H. Mabuchi, Q. A. Turchette, M. S. Chapman, and H. J. Kimble, “Real time detection of single atoms falling through a high-finesse cavity,” Opt. Lett. 21, 1393–1395 (1996).
- C. J. Hood, M. S. Chapman, T. W. Lynn, and H. J. Kimble, “Real-time cavity QED with single atoms,” Phys. Rev. Lett. 80, 4157–4160 (1998).
- H. Mabuchi, J. Ye, and H. J. Kimble, “Full observation of single-atom dynamics in cavity QED,” Appl. Phys. B: Lasers Opt. 68, 1095–1108 (1999).
- J. Ye, D. W. Vernooy, and H. J. Kimble, “Trapping of single atoms in cavity QED,” Phys. Rev. Lett. 83, 4987–4990 (1999).
- S. J. van Enk, J. McKeever, H. J. Kimble, and J. Ye, “Cooling of a single atom in an optical trap inside a resonator,” Phys. Rev. A 64, 013407 (2001).
- J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H.-C. Naegerl, D. M. Stamper-Kurn, and H. J. Kimble, “State-insensitive cooling and trapping of single atoms in an optical cavity,” Phys. Rev. Lett. 90, 133602 (2003).
- J. McKeever, A. Boca, A. D. Boozer, J. R. Buck, and H. J. Kimble, “Experimental realization of a one-atom laser in the regime of strong coupling,” Nature (London) 425, 268–271 (2003).
- H. Walther, “Single atom experiments in cavities and traps,” Proc. R. Soc. London, Ser. A 454, 431–445 (1998).
- A. M. Smith and C. W. Gardiner, “Phase-space method without large-N scaling for the laser and optical bistability,” Phys. Rev. A 38, 4073–4086 (1988).
- Y. Mu and C. Savage, “One-atom lasers,” Phys. Rev. A 46, 5944–5954 (1992).
- T. Pellizari and H. Ritsch, “Preparation of stationary Fock states in a one-atom Raman laser,” Phys. Rev. Lett. 72, 3973–3976 (1994).
- T. Pellizari and H. Ritsch, “Photon statistics of the three-level one-atom laser,” J. Mod. Opt. 41, 609–623 (1994).
- G. M. Meyer, M. Loffler, and H. Walther, “Spectrum of the ion-trap laser,” Phys. Rev. A 56, R1099–R1102 (1997).
- G. M. Meyer and H.-J. Briegel, “Pump-operator treatment of the ion-trap laser,” Phys. Rev. A 58, 3210–3220 (1998).
- S. Ya. Kilin and T. B. Karlovich, “Single-atom laser: coherent and nonclassical effects in the regime of a strong atom field correlation,” J. Exp. Theor. Phys. 95, 805–819 (2001).
- B. Jones, S. Ghose, J. Clemens, P. Rice, and L. Pedrotti, “Photon statistics of a single atom laser,” Phys. Rev. A 60, 3267–3275 (1999).
- G. Bjork, A. Karlsson, and Y. Yamamoto, “Definition of a laser threshold,” Phys. Rev. A 50, 1675–1680 (1994).
- P. R. Rice and H. J. Carmichael, “Photon statistics of a cavity-QED laser: a comment on the laser phase-transition analogy,” Phys. Rev. A 50, 4318–4329 (1994).
- H. Haken, “Fully quantum mechanical solutions of the laser equations,” in Light and Matter, L. Genzel, ed., Vol. XXV/2c of Handbuch der Physik, S. Flügge, ed. (Springer-Verlag, 1970), pp. 99–172.
- G. Koganov and R. Shuker, “Threshold and nonlinear be-havior of lasers of lambda and V configurations,” Phys. Rev. A 58, 1559–1562 (1998).
- H. J. Carmichael, An Open Systems Approach to Quantum Optics (Springer-Verlag, Berlin, 1993).
- L. Tian and H. J. Carmichael, “Quantum trajectory simulations of two-state behavior in an optical cavity containing one atom,” Phys. Rev. A 46, R6801–R6804 (1992).
- J. Dalibard, Y. Castin, and K. Molmer, “Wave-function approach to dissipative processes in quantum optics,” Phys. Rev. Lett. 68, 580–583 (1992).
- R. Dum, P. Zoller, and H. Ritsch, “Monte Carlo simulation of the atomic master equation for spontaneous emission,” Phys. Rev. A 45, 4879–4887 (1992).
- B. Misra and E. C. G. Sudarshan, “Zeno’s paradox in quantum theory,” J. Math. Phys. 18, 756–763 (1977).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.