OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 21, Iss. 12 — Dec. 1, 2004
  • pp: 2191–2196

Thermally induced dephasing in periodically poled KTP frequency-doubling crystals

Zhi M. Liao, Stephen A. Payne, Jay Dawson, Alex Drobshoff, Chris Ebbers, Dee Pennington, and Luke Taylor  »View Author Affiliations


JOSA B, Vol. 21, Issue 12, pp. 2191-2196 (2004)
http://dx.doi.org/10.1364/JOSAB.21.002191


View Full Text Article

Enhanced HTML    Acrobat PDF (190 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A thermally induced spatial and temporal dephasing model of second-harmonic generation has been developed to describe the conversion efficiency and its degradation of periodically poled potassium titanium phosphate (PPKTP) in a cw, single-pass frequency conversion system. The model confirms the experimental data that show that second-harmonic power greater than 800 mW (15 kW/cm2) causes two-photon nonlinear absorption, leading to time-dependent photochromic damage in PPKTP. This added absorption degrades the conversion efficiency from an initial value of 19% to an unrecoverable asymptotic value of ∼8% in 2 h at 145 kW/cm2 of pump intensity through thermal detuning phase mismatch.

© 2004 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4400) Nonlinear optics : Nonlinear optics, materials

Citation
Zhi M. Liao, Stephen A. Payne, Jay Dawson, Alex Drobshoff, Chris Ebbers, Dee Pennington, and Luke Taylor, "Thermally induced dephasing in periodically poled KTP frequency-doubling crystals," J. Opt. Soc. Am. B 21, 2191-2196 (2004)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-21-12-2191


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Xue, N. Ming, J. Zhu, and D. Feng, “The second harmonic generation in LiNbO3 crystals with period laminar ferroelectric domains,” Chin. Phys. 4, 554–564 (1984).
  2. W. Wang, Q. Zhou, Z. Geng, and D. Feng, “Study of LiTaO3 crystals grown with a modulated structure. I. Second harmonic generation in LiTaO3 crystals with periodic laminar ferroelectric domains,” J. Cryst. Growth 79, 706–709 (1986). [CrossRef]
  3. Q. Chen and W. P. Risk, “Periodic poling of KTiOPO4 using an applied electric field,” Electron. Lett. 30, 1516–1517 (1994). [CrossRef]
  4. H. Karlsson, F. Laurell, P. Henriksson, and G. Arvidsson, “Frequency doubling in periodically poled RbTiOAsO4,” Electron. Lett. 32, 556–557 (1996). [CrossRef]
  5. A. Chowdhury, H. M. Ng, M. Bhardwaj, and N. G. Weimann, “Second-harmonic generation in periodically poled GaN,” Appl. Phys. Lett. 83, 1077–1079 (2003). [CrossRef]
  6. G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-Efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997). [CrossRef]
  7. M. Katz, R. Route, D. Hum, R. Roussev, K. Parameswaran, V. Kondilenko, G. Miller, and M. Fejer, “Near-stoichiometric 1% Mg-doped LiNbO3 and stoichiometric LiTaO3 fabricated by vapor transport equilibration for frequency conversion,” in Stanford Photonics Research Center Annual Report (Stanford Photonics Research Center, Stanford, Calif., 2003).
  8. A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997). [CrossRef]
  9. S. V. Popov, S. V. Chernikov, and J. R. Taylor, “6-W Average power green light generation using seeded high power ytterbium fibre amplifier and periodically poled KTP,” Opt. Commun. 174, 231–234 (2000). [CrossRef]
  10. V. Pasiskevicius, S. Wang, J. A. Tellefsen, F. Laurell, and H. Karlsson, “Efficient Nd:YAG laser frequency doubling with periodically poled KTP,” Appl. Opt. 37, 7116–7119 (1998). [CrossRef]
  11. V. A. Maslov, V. A. Mikhailov, O. P. Shaunin, and I. A. Shcherbakov, “Nonlinear absorption in KTP crystals,” Quantum Electron. 27, 356–359 (1997). [CrossRef]
  12. V. Mürk, V. Denks, A. Dudelzak, P. Proulx, and V. Vassiltsenko, “Gray tracks in KTiOPO4: mechanism of creation and bleaching,” Nucl. Instrum. Methods Phys. Res. B 141, 472–476 (1998). [CrossRef]
  13. X. Mu, Y. J. Ding, J. Wang, Y. Liu, J. Wei, and J. B. Khurgin, “Damage mechanisms for KTiOPO4 crystals under irradiation of a cw argon laser,” in Laser Material Crystal Growth and Nonlinear Materials and Devices, K. I. Schaffers and L. E. Myers, eds., Proc. SPIE 3610, 9–14 (1999). [CrossRef]
  14. B. Boulanger, I. Rousseau, J. P. Feve, M. Maglione, B. Menaert, and G. Marnier, “Optical studies of laser-induced gray-tracking in KTP,” IEEE J. Quantum Electron. 35, 281–286 (1999). [CrossRef]
  15. B. Boulanger, J.-P. Fève, and Y. Guillien, “Thermo-optical effect and saturation of nonlinear absorption induced by gray tracking in a 532-nm-pumped KTP optical parametric oscillator,” Opt. Lett. 25, 484–486 (2000). [CrossRef]
  16. R. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992).
  17. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992). [CrossRef]
  18. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962). [CrossRef]
  19. G. D. Boyd and D. A. Kleinman, “Parametic interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968). [CrossRef]
  20. D. Eimerl, “Thermal aspects of high-average-power electrooptic switches,” IEEE J. Quantum Electron. 23, 2238–2251 (1987). [CrossRef]
  21. A. J. Bayramian, C. D. Marshall, J. H. Wu, J. A. Speth, S. A. Payne, G. J. Quarles, and V. K. Castillo, “Ce:LiSrAlF6 laser performance with antisolarant pump beam,” J. Lumin. 69, 85–94 (1996). [CrossRef]
  22. C. D. Marshall, S. A. Payne, M. A. Henesian, J. A. Speth, and H. T. Powell, “Ultraviolet-induced transient absorption in potassium dihydrogen phosphate and its influence on frequency conversion,” J. Opt. Soc. Am. B 11, 774–785 (1994). [CrossRef]
  23. Eksma Co. KTP product specification, www.eksma.lt, Vilnius, Lithuania.
  24. A. A. Alexandrovski, G. Foulon, L. E. Myers, R. K. Route, and M. M. Fejer, “UV and visible absorption in LiTaO3,” in Laser Material Crystal Growth and Nonlinear Materials and Devices, K. I. Schaffers and L. E. Myers, eds., Proc. SPIE 3610, 44–51 (1999). [CrossRef]
  25. Cristal Laser KTP product specification, www.cristal-laser-fr, Chaligny, France.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited