OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 3 — Mar. 1, 2004
  • pp: 568–573

Third-harmonic generation in a LiNbO3 channel waveguide with a quasi-periodic grating

Guo-Ding Xu, Yue-Hua Wang, Yong-Yuan Zhu, Shi-Ning Zhu, and Nai-Ben Ming  »View Author Affiliations

JOSA B, Vol. 21, Issue 3, pp. 568-573 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (171 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a theoretical analysis of third-harmonic generation (THG) in a LiNbO3 channel waveguide with a quasi-periodic grating. For efficient third-harmonic conversion, apart from a large nonlinear coefficient and quasi-phase-matching conditions, a large overlap integral between the interacting waves is needed, which can be achieved in a microstructured waveguide. The dependence of the optimum interaction length on the fundamental power is described. The effects of the width of the mask opening and of the annealing depth on the THG are determined. The relationship among the bandwidths and the fundamental wavelength and the operating temperature as well as the width of the mask opening are also given. The results might be useful for the fabrication of a practical device.

© 2004 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4400) Nonlinear optics : Nonlinear optics, materials

Guo-Ding Xu, Yue-Hua Wang, Yong-Yuan Zhu, Shi-Ning Zhu, and Nai-Ben Ming, "Third-harmonic generation in a LiNbO3 channel waveguide with a quasi-periodic grating," J. Opt. Soc. Am. B 21, 568-573 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984), Chap. 12, pp. 521–531.
  2. A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. Katz, and D. Eger, “Green and ultraviolet quasi-phase-matched second harmonic generation in bulk periodically-poled KTiOPO4,” Opt. Commun. 142, 265–268 (1997). [CrossRef]
  3. G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997). [CrossRef]
  4. T. Kartaloğlu, K. G. Köprülü, and O. Aytür, “Phase-matched self-doubling optical parametric oscillator,” Opt. Lett. 22, 280–282 (1997). [CrossRef]
  5. V. Petrov and F. Noack, “Frequency upconversion of tunable femtosecond pulses by parametric amplification and sum-frequency generation in a single nonlinear crystal,” Opt. Lett. 20, 2171–2173 (1995). [CrossRef] [PubMed]
  6. K. P. Petrov, R. F. Curl, and F. K. Tittel, “Compact laser difference-frequency spectrometer for multicomponent trace gas detection,” Appl. Phys. B 66, 531–538 (1998). [CrossRef]
  7. K. Fradkin, A. Arie, A. Skliar, and G. Roseman, “Tunable midinfrared source by difference frequency generation in bulk periodically poled KTiOPO4,” Appl. Phys. Lett. 74, 914–916 (1999). [CrossRef]
  8. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995). [CrossRef]
  9. A. Garashi, A. Arie, A. Skliar, and G. Rosenman, “Continuous-wave optical parametric oscillator based on periodically poled KTiOPO4,” Opt. Lett. 23, 1739–1741 (1998). [CrossRef]
  10. O. Pfister, J. S. Wells, L. Hollberg, L. Zink, D. A. Van Baak, M. D. Levenson, and W. R. Bosenberg, “Continuous-wave frequency tripling and quadrupling by simultaneous three-wave mixing in periodically poled crystals: application to a two-step 1.19–10.71-μm frequency bridge,” Opt. Lett. 22, 1211–1213 (1997). [CrossRef] [PubMed]
  11. X. Mu and Y. J. Ding, “Efficient third-harmonic generation in partly periodically poled KTiOPO4 crystal,” Opt. Lett. 26, 623–625 (2001). [CrossRef]
  12. X. Mu, W. Shi, and Y. J. Ding, “Efficient KTiOPO4 blue-light converter for monochromatic 1.3188-μm emission line of a pulsed Nd:YAG laser,” J. Appl. Phys. 93, 9437–9440 (2003). [CrossRef]
  13. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997). [CrossRef]
  14. C. Zhang, Y. Y. Zhu, S. X. Yang, Y. Q. Qin, S. N. Zhu, Y. B. Chen, H. Liu, and N. B. Ming, “Crucial effects of coupling coefficient on quasi-phase-matched harmonic generation in an optical superlattice,” Opt. Lett. 25, 436–438 (2000). [CrossRef]
  15. C. Zhang, H. Wei, Y. Y. Zhu, H. T. Wang, S. N. Zhu, and N. B. Ming, “Third-harmonic generation in a general two-component quasi-periodic optical superlattice,” Opt. Lett. 26, 899–901 (2001). [CrossRef]
  16. Y. Kitaoka, K. Mizuuchi, T. Yokoyama, K. Yamamoto, K. Narumi, and M. Kato, “Quasi-phase-matched second harmonic generation device in Mg-doped LiNbO3 and its application to a high-density optical disk,” Bull. Mater. Sci. 22, 405–411 (1999). [CrossRef]
  17. K. R. Parameswaran, M. Fujimura, M. H. Chou, and M. M. Fejer, “Low-power all-optical gate based on sum frequency mixing in APE waveguides in PPLN,” IEEE Photon. Technol. Lett. 12, 654–656 (2000). [CrossRef]
  18. T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO:LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40, 1751–1753 (2001). [CrossRef]
  19. K. Fradkin-Kashi and A. Arie, “Multiple-wavelength quasi-phase-matched nonlinear interactions,” IEEE J. Quantum Electron. 35, 1649–1656 (1999). [CrossRef]
  20. F. A. Katsriku, B. M. Azizur, and K. T. V. Grattan, “Finite element analysis of diffused anisotropic optical waveguides,” J. Lightwave Technol. 14, 780–786 (1996). [CrossRef]
  21. T. Suhara, Y. Handa, H. Nishihara, and J. Koyama, “Analysis of optical channel waveguides and directional couplers with graded-index profiles,” J. Opt. Soc. Am. 69, 807–815 (1979). [CrossRef]
  22. M. Koshiba, K. Hayata, and M. Suzuki, “Approximate scalar finite-element analysis of anisotropic optical waveguides with off-diagonal elements in a permittivity tensor,” IEEE Trans. Microwave Theory Tech. MTT-32, 587–593 (1984). [CrossRef]
  23. X. F. Cao, R. V. Ramaswamy, and R. Srivastava, “Characterization of annealed proton exchanged LiNbO3 waveguides for nonlinear frequency conversion,” J. Lightwave Technol. 10, 1302–1313 (1992). [CrossRef]
  24. T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26, 1265–1276 (1990). [CrossRef]
  25. J. Khurgin, “Improvement of frequency-conversion efficiency in waveguides with rotationally twinned layers,” Opt. Lett. 13, 603–605 (1988). [CrossRef] [PubMed]
  26. S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2759 (1997). [CrossRef]
  27. D. F. Clark, A. C. G. Nutt, K. K. Wong, P. J. R. Laybourn, and R. M. De La Rue, “Characterization of proton-exchange slab optical waveguides in Z-cut LiNbO3,” J. Appl. Phys. 54, 6218–6220 (1983). [CrossRef]
  28. S. T. Vohra, A. R. Mickelson, and S. E. Asher, “Diffusion characteristics and waveguiding properties of proton exchanged and annealed LiNbO3 waveguides,” J. Appl. Phys. 66, 5161–5174 (1989). [CrossRef]
  29. X. F. Cao, R. Srivastava, R. V. Ramaswamy, and J. Natour, “Recovery of second order optical nonlinearity in annealed proton exchanged LiNbO3,” IEEE Photon. Technol. Lett. 3, 25–27 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited