OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Vol. 21, Iss. 3 — Mar. 1, 2004
  • pp: 605–616

Thermal-lensing measurement of particle thermophoresis in aqueous dispersions

Roberto Rusconi, Lucio Isa, and Roberto Piazza  »View Author Affiliations

JOSA B, Vol. 21, Issue 3, pp. 605-616 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (413 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that thermophoresis (particle drift driven by thermal gradients) in aqueous solutions can be measured by using an all-optical thermal-lensing setup, where a temperature gradient is set by a near-infrared laser beam with no need of light-absorbing dyes. After discussing the principles of the method, we study by numerical simulation the nature and extent of parasitic thermal-convection effects, and we describe an optical setup designed to limit them. We finally present preliminary results on thermophoresis in micellar solutions and colloidal dispersions.

© 2004 Optical Society of America

OCIS Codes
(000.6850) General : Thermodynamics
(160.6060) Materials : Solgel
(190.4870) Nonlinear optics : Photothermal effects
(220.4830) Optical design and fabrication : Systems design
(350.6830) Other areas of optics : Thermal lensing

Roberto Rusconi, Lucio Isa, and Roberto Piazza, "Thermal-lensing measurement of particle thermophoresis in aqueous dispersions," J. Opt. Soc. Am. B 21, 605-616 (2004)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. V. Tyrrell, Diffusion and Heat Flow in Liquids (Butterworth, London, 1961).
  2. S. R. De Groot and P. Mazur, Nonequilibrium Thermodynamics (North Holland, Amsterdam, 1962).
  3. A. La Porta and C. M. Surko, “Convective instability in a fluid mixture heated from above,” Phys. Rev. Lett. 80, 3759–3762 (1998). [CrossRef]
  4. R. W. Schmitt, “The ocean’s salt fingers,” Sci. Am. 272, 70–75 (1995). [CrossRef]
  5. L. L. Zheng, D. J. Larson, Jr., and H. Zhang, “Role of thermotransport (Soret effect) in macrosegregation during eutectic/off-eutectic directional solidification,” J. Cryst. Growth 191, 243–251 (1998). [CrossRef]
  6. R. T. Cygan and C. R. Carrigan, “Time-dependent Soret transport: applications to brine and magma,” Chem. Geol. 95, 201–212 (1992). [CrossRef]
  7. F. H. Busse, “Fundamentals of thermal convection,” in Mantle Convection: Plate Tectonics and Global Dynamics, W. Peltier, ed. (Gordon and Breach, London, 1989), pp. 23–95.
  8. M. C. Cross and P. C. Honenberg, “Pattern formation outside of equilibrium,” Rev. Mod. Phys. 65, 851–1112 (1993). [CrossRef]
  9. A. Vailati and M. Giglio, “Nonequilibrium fluctuations in time-dependent diffusion processes,” Phys. Rev. E 58, 4361–4371 (1998). [CrossRef]
  10. D. Braun and A. Libschaber, “Trapping of DNA by thermophoretic depletion and convection,” Phys. Rev. Lett. 89, 188103 (2002). [CrossRef] [PubMed]
  11. R. Piazza and A. Guarino, “Soret effect in interacting micellar solutions,” Phys. Rev. Lett. 88, 208302 (2002). [CrossRef] [PubMed]
  12. S. Iacopini and R. Piazza, “Thermophoresis in protein solutions,” Europhys. Lett. 63, 247–253 (2003). [CrossRef]
  13. M. Giglio and A. Vendramini, “Soret-type motion of macromolecules in solution,” Phys. Rev. Lett. 38, 26–30 (1977). [CrossRef]
  14. W. Köhler, “Thermodiffusion in polymer solutions as observed by forced Rayleigh scattering,” J. Chem. Phys. 98, 660–668 (1993). [CrossRef]
  15. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long-transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–8 (1965). [CrossRef]
  16. J. R. Whinnery, D. T. Miller, and F. Dabby, “Thermal convection and spherical aberration distortion of laser beams in low-loss liquids,” IEEE J. Quantum Electron. 3, 382–383 (1967). [CrossRef]
  17. S. E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley, New York, 1996).
  18. M. Franko and C. D. Tran, “Analytical thermal lens instrumentation,” Rev. Sci. Instrum. 67, 1–18 (1996). [CrossRef]
  19. M. Giglio and A. Vendramini, “Thermal lens effect in a binary liquid mixture: a new effect,” Appl. Phys. Lett. 25, 555–557 (1974). [CrossRef]
  20. L. Mistura, “Critical behavior of transport coefficients in multicomponent fluid mixtures,” J. Chem. Phys. 62, 4571–4572 (1975). [CrossRef]
  21. S. Alves, A. Bourdon, and A. M. F. Neto, “Generalization of the thermal lens model formalism to account for thermod-iffusion in a single-beam Z-scan experiment: determination of the Soret coefficient,” J. Opt. Soc. Am. B 20, 713–718 (2003). [CrossRef]
  22. N. Arnaud and J. Georges, “On the analytical use of the Soret-enhanced thermal lens signal in aqueous solutions,” Anal. Chim. Acta 445, 239–244 (2001). [CrossRef]
  23. S. J. Sheldon, L. V. Knight, and J. M. Thorne, “Laser-induced thermal lens effect: a new theoretical model,” Appl. Opt. 21, 1663–1669 (1982). [CrossRef] [PubMed]
  24. S. Wu and N. J. Dovichi, “Fresnel diffraction theory for steady-state thermal lens measurements in thin films,” J. Appl. Phys. 67, 1170–1182 (1990). [CrossRef]
  25. S. A. Akhmanov, D. P. Krindach, A. V. Migulin, A. P. Sukhorukov, and H. V. Khokhlov, “Thermal self-actions of laser beams,” IEEE J. Quantum Electron. 4, 568–575 (1968). [CrossRef]
  26. L. Quartapelle, Numerical Simulations of the Incompressible Navier–Stokes Equations (Birkhauser-Verlag, Berlin, 1993).
  27. C. A. Carter and J. M. Harris, “Comparison of models describing the thermal lens effect,” Appl. Opt. 23, 476–481 (1984). [CrossRef] [PubMed]
  28. M. Giglio and A. Vendramini, “Thermal-diffusion measurements near a consolute critical point,” Phys. Rev. Lett. 34, 561–564 (1975). [CrossRef]
  29. J. Rauch and W. Köhler, “Diffusion and thermal diffusion in semidilute to concentrated solutions of polystyrene in toluene in the vicinity of the glass transition,” Phys. Rev. Lett. 88, 185901 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited