Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Atomic-coherence effect on the Jaynes–Cummings model with atomic motion

Not Accessible

Your library or personal account may give you access

Abstract

The nonlinear transient effects, similar to self-induced transparency and adiabatic following, are studied for a moving two-level atom that is entering into an ideal microwave cavity in a coherent superposition of its states. The atom undergoes a one-photon transition in the cavity, sustaining a spatial field distribution for a single-mode coherent (or thermal or Fock state) field. For some particular choice of parameters of atomic coherence, removal of an appreciable amount of field energy from the cavity could be observed.

© 2004 Optical Society of America

Full Article  |  PDF Article
More Like This
Echoes in the coherent-state Jaynes–Cummings model

P. K. Aravind and J. O. Hirschfelder
J. Opt. Soc. Am. B 2(5) 739-747 (1985)

Wigner function and entanglement dynamics of a two-atom two-mode nonlinear Jaynes–Cummings model

Mahnaz Ghorbani, Mohammad Javad Faghihi, and Hassan Safari
J. Opt. Soc. Am. B 34(9) 1884-1893 (2017)

Measurement-induced nonclassical states of the Jaynes–Cummings model

Himel Ghosh and Christopher C. Gerry
J. Opt. Soc. Am. B 14(11) 2782-2787 (1997)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (22)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved