OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 22, Iss. 1 — Jan. 1, 2005
  • pp: 240–253

Applications of magneto-optical waveguides in integrated optics: review

Horst Dötsch, Norbert Bahlmann, Oleksandr Zhuromskyy, Manfred Hammer, Ludger Wilkens, Reinald Gerhardt, Peter Hertel, and Anatoly F. Popkov  »View Author Affiliations


JOSA B, Vol. 22, Issue 1, pp. 240-253 (2005)
http://dx.doi.org/10.1364/JOSAB.22.000240


View Full Text Article

Acrobat PDF (1393 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Magneto-optical garnets combine high Faraday rotation with low optical losses in the near-infrared region where optical communication through glass fiber is established. In this spectral range, garnets are the only materials discussed to realize nonreciprocal devices as optical isolators and circulators. Although such devices are available as micro-optical components, practical versions of their integrated counterparts are still lacking. Numerous concepts have been developed theoretically, many of which are tested experimentally. We present an overview of the state of the art of the applications of garnet films in integrated optics. Also, the technique of combining garnets with semiconductor materials is discussed.

© 2005 Optical Society of America

OCIS Codes
(130.1750) Integrated optics : Components
(160.3820) Materials : Magneto-optical materials
(230.2240) Optical devices : Faraday effect
(230.3240) Optical devices : Isolators
(230.3810) Optical devices : Magneto-optic systems
(230.7380) Optical devices : Waveguides, channeled

Citation
Horst Dötsch, Norbert Bahlmann, Oleksandr Zhuromskyy, Manfred Hammer, Ludger Wilkens, Reinald Gerhardt, Peter Hertel, and Anatoly F. Popkov, "Applications of magneto-optical waveguides in integrated optics: review," J. Opt. Soc. Am. B 22, 240-253 (2005)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-22-1-240


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. A. D. Fisher, J. N. Lee, E. S. Gaynor, and A. B. Tveten, "Optical guided-wave interactions with magnetostatic waves at microwave-frequencies," Appl. Phys. Lett. 41, 779-781 (1982).
  2. H. Tamada, M. Kaneko, and T. Okamoto, "TM-TE optical-mode conversion induced by a transversely propagating magnetostatic wave in a (BiLu)3Fe5O12 film," J. Appl. Phys. 64, 554-559 (1988).
  3. S. H. Talisa, "The collinear interaction between forward volume magnetostatic waves and guided light in YIG films," IEEE Trans. Magn. 24, 2811-2813 (1988).
  4. C. S. Tsai and D. Young, "Magnetostatic-forward-volume-wave-based guided-wave magneto-optic Bragg cells and applications to communications and signal processing," IEEE Trans. Microwave Theory Tech. 38, 560-570 (1990).
  5. C. S. Tsai and D. Young, "Wideband scanning of a guided-light beam and spectrum analysis using magnetostatic waves in an yttrium iron garnet-gadolinium gallium garnet wave-guide," Appl. Phys. Lett. 54, 196-198 (1989).
  6. B. Neite and H. Dötsch, "Dynamical conversion of optical modes in garnet films induced by ferrimagnetic resonance," J. Appl. Phys. 62, 648-652 (1987).
  7. H. P. Winkler, H. Dötsch, B. Lührmann, and S. Sure, "Dynamic conversion of optical modes in magnetic garnet films induced by resonance of periodic stripe domains," J. Appl. Phys. 76, 3272-3278 (1994).
  8. B. Stegmueller, E. Baur, and M. Kicherer, "15-GHz modulation performance of integrated DFB laser diode EA modulator with identical multiple-quantum-well double-stack active layer," IEEE Photonics Technol. Lett. 14, 1647-1649 (2002).
  9. L. Wilkens, D. Träger, H. Dötsch, A. M. Alexeev, A. F. Popkov, and V. I. Korneev, "Compensation walls in gallium and aluminium substituted gadolinium-bismuth-iron garnet films created by laser annealing: measurements and simulations," J. Appl. Phys. 93, 2839-2847 (2003).
  10. S. L. Blank and J. W. Nielsen, "The growth of magnetic garnets by liquid phase epitaxy," J. Cryst. Growth 17, 302-311 (1972).
  11. J. P. Krumme, V. Doormann, and B. Strocka, "Selected-area sputter epitaxy of iron-garnet films," J. Appl. Phys. 60, 2065-2068 (1986).
  12. S. Kahl and A. M. Grishin, "Pulsed laser deposition of Y3Fe5O12 and Bi3Fe5O12 films on garnet substrates," J. Appl. Phys. 93, 6945-6947 (2002).
  13. P. Hansen, C. P. Klages, J. Schuldt, and K. Witter, "Magnetic and magneto-optical properties of bismuth-substituted lutetium iron garnet films," Phys. Rev. B 31, 5858-5864 (1985).
  14. M. Gomi, K. Satoh, and M. Abe, "Giant Faraday rotation of Ce-substituted YIG films epitaxially grown by RF sputtering," Jpn. J. Appl. Phys. 27, L1536-L1538 (1988).
  15. M. S. Stern, "Semivectorial polarized finite difference method for optical waveguides with arbitrary index profiles," IEE Proc. Optoelectron. 135, 56-63 (1988).
  16. M. S. Stern, "Semivectorial polarized H field solutions for dielectric waveguides with arbitrary index profiles," IEE Proc.-J 135, 333-338 (1988).
  17. K. S. Chiang, "Analysis of the effective-index method for the vector modes of rectangular-core dielectric waveguides," IEEE Trans. Microwave Theory Tech. 44, 692-700 (1996).
  18. P. N. Robson and P. C. Kendall, Rib Waveguide Theory by the Spectral Index Method (Wiley, New York, 1990).
  19. B. M. A. Rahmann and J. B. Davies, "Finite-element solution of integrated optical waveguides," J. Lightwave Technol. 2, 682-687 (1984).
  20. N. Bahlmann, M. Lohmeyer, H. Dötsch, and P. Hertel, "Finite-element analysis of nonreciprocal phase shift for TE modes in magnetooptic rib waveguides with a compensation wall," IEEE J. Quantum Electron. 35, 250-253 (1999).
  21. F. Wijnands, H. J. W. M. Hoekstra, G. J. M. Krijnen, and R. M. de Ridder, "Modal fields calculation using the finite difference beam propagation method," J. Lightwave Technol. 12, 2066-2072 (1994).
  22. J. Yamauchi, G. Takahashi, and H. Nakano, "Full-vectorial beam-propagation method based on the McKee-Mitchell scheme with improved finite-difference formulas," J. Lightwave Technol. 16, 2458-2464 (1998).
  23. A. S. Sudbo, "Film mode matching: a versatile numerical method for vector mode field calculations in dielectric waveguides," Pure Appl. Opt. 2, 211-233 (1993).
  24. M. Lohmeyer, "Wave-matching method for mode analysis of dielectric waveguides," Opt. Quantum Electron. 29, 907-922 (1997).
  25. M. Lohmeyer, "Vectorial wave-matching mode analysis of integrated optical waveguides," Opt. Quantum Electron. 30, 385-396 (1998).
  26. G. J. Gabriel and M. E. Brodwin, "The solution of guided waves in inhomogeneous anisotropic media by perturbation and variational methods," IEEE Trans. Microwave Theory Tech. 13, 364-370 (1965).
  27. S. Yamamoto and T. Makimoto, "Circuit theory for a class of anisotropic and gyrotropic thin-film optical waveguides and design of nonreciprocal devices for integrated optics," J. Appl. Phys. 45, 882-888 (1974).
  28. A. F. Popkov, M. Fehndrich, M. Lohmeyer, and H. Dötsch, "Nonreciprocal TE mode phase shift by domain walls in magneto-optic rib waveguides," Appl. Phys. Lett. 72, 2508-2510 (1998).
  29. M. Wallenhorst, M. Niemöller, H. Dötsch, P. Hertel, R. Gerhardt, and B. Gather, "Enhancement of the nonreciprocal magneto-optic effect of TM modes using iron garnet double layers with opposite Faraday rotation," J. Appl. Phys. 77, 2902-2905 (1995).
  30. N. Bahlmann, V. Chandrasekhara, A. Erdmann, R. Gerhardt, P. Hertel, R. Lehmann, D. Salz, F. J. Schröteler, M. Wallenhorst, and H. Dötsch, "Improved design of magneto-optic rib waveguides for optical isolators," J. Lightwave Technol. 16, 818-823 (1998).
  31. M. Fehndrich, A. Josef, L. Wilkens, J. Kleine-Börger, N. Bahlmann, M. Lohmeyer, P. Hertel, and H. Dötsch, "Experimental investigation of the nonreciprocal phase shift of a transverse electric mode in a magneto-optic rib waveguide," Appl. Phys. Lett. 74, 2918-2920 (1999).
  32. L. Wilkens, D. Träger, A. F. Popkov, A. Alexeev, and H. Dötsch, "Nonreciprocal phase shift of TE modes induced by a compensation wall in a magneto-optic rib waveguide," Appl. Phys. Lett. 79, 4292-4294 (2001).
  33. J. Fujita, M. Levy, R. M. Osgood, Jr., L. Wilkens, and H. Dötsch, "Polarization-independent waveguide optical isolator based on nonreciprocal phase shift," IEEE Photonics Technol. Lett. 12, 1510-1512 (2000).
  34. N. Bahlmann, M. Wallenhorst, L. Wilkens, V. Backherms, A. Josef, P. Hertel, and H. Dötsch, "Reduction of the temperature dependence of the nonreciprocal effect of magneto- optic channel waveguides," Appl. Opt. 38, 5747-5751 (1999).
  35. O. Zhuromskyy, H. Dötsch, M. Lohmeyer, L. Wilkens, and P. Hertel, "Magneto-optical waveguides with polarization-independent nonreciprocal phase shift," J. Lightwave Technol. 19, 214-221 (2001).
  36. K. Ando, T. Okoshi, and N. Koshizuka, "Waveguide magneto-optic isolator fabricated by laser annealing," Appl. Phys. Lett. 53, 4-6 (1988).
  37. T. Mizumoto, Y. Kawaoka, and Y. Naito, "Waveguide-type optical isolator using the Faraday and Cotton-Mouton effects," Trans. Inst. Electron. Commun. Eng. Jpn., Sect. E 69, 968-972 (1986).
  38. M. Lohmeyer, N. Bahlmann, O. Zhuromskyy, H. Dötsch, and P. Hertel, "Phase matched rectangular magneto-optic waveguides for applications in integrated optical isolators: numerical assessment," Opt. Commun. 158, 189-200 (1998).
  39. H. Dammann, E. Pross, and G. Rabe, "Phase matching in symmetrical single-mode magneto-optic waveguides by application of stress," Appl. Phys. Lett. 49, 1755-1757 (1986).
  40. R. Wolfe, V. J. Fratello, and M. NcGlashan-Powell, "Elimination of birefringence in garnet films for magneto-optic wave-guide devices," Appl. Phys. Lett. 51, 1221-1223 (1987).
  41. R. Wolfe, J. Hegarty, J. F. Dillon, Jr., L. C. Luther, G. K. Celler, L. E. Trimble, and C. S. Dorsey, "Thin-film waveguide magneto-optic isolator," Appl. Phys. Lett. 46, 817-819 (1985).
  42. H. Dammann, E. Pross, G. Rabe, and W. Tolksdorf, "45° waveguide isolators with phase mismatch," Appl. Phys. Lett. 56, 1302-1304 (1990).
  43. R. Wolfe, J. F. Dillon, Jr., R. A. Liebermann, and V. J. Fratello, "Broadband magneto-optic waveguide isolator," Appl. Phys. Lett. 57, 960-962 (1990).
  44. T. Shintaku, "Integrated optical isolator based on efficient nonreciprocal radiation mode conversion," Appl. Phys. Lett. 73, 1946-1948 (1998).
  45. M. Lohmeyer, N. Bahlmann, O. Zhuromskyy, H. Dötsch, and P. Hertel, "Unidirectional magneto-optic polarization converters," J. Lightwave Technol. 17, 2605-2611 (1999).
  46. F. Auracher and H. H. Witte, "A new design for an integrated optical isolator," Opt. Commun. 13, 435-438 (1975).
  47. N. Bahlmann, M. Lohmeyer, M. Wallenhorst, H. Dötsch, and P. Hertel, "A comparison of an improved design for two integrated optical isolators based on nonreciprocal Mach-Zehnder interferometry," in Symposium Proceedings on High-Density Magnetic Recording and Integrated Magneto-optics: Materials and Devices , J. Bain, M. Levy, J. Lorenzo, T. Nolan, Y. Okamura, K. Rubin, B. Stadler, and R. Wolfe, eds. (Materials Research Society, Warrendale, Pa., 1998), Vol. 517, pp. 513-518.
  48. N. Bahlmann, M. Lohmeyer, H. Dötsch, and P. Hertel, "Integrated magneto-optic Mach-Zehnder isolator for TE modes," Electron. Lett. 34, 2122-2123 (1998).
  49. J. Fujita, M. Levy, R. M. Osgood, Jr., L. Wilkens, and H. Dötsch, "Waveguide optical isolator based on Mach-Zehnder interferometer," Appl. Phys. Lett. 76, 2158-2160 (2000).
  50. O. Zhuromskyy, M. Lohmeyer, N. Bahlmann, H. Dötsch, P. Hertel, and A. F. Popkov, "Analysis of polarization independent Mach-Zehnder-type integrated optical isolator," J. Lightwave Technol. 17, 1200-1205 (1999).
  51. N. Bahlmann, M. Lohmeyer, O. Zhuromskyy, H. Dötsch, and P. Hertel, "Nonreciprocal coupled waveguides for integrated optical isolators and circulators for TM modes," Opt. Commun. 161, 330-337 (1999).
  52. M. Lohmeyer, M. Shamonin, N. Bahlmann, P. Hertel, and H. Dötsch, "Radiatively coupled waveguide concept for an integrated magnetooptic circulator," in Symposium Proceedings on High-Density Magnetic Recording and Integrated Magnetooptics: Materials and Devices , J. Bain, M. Levy, J. Lorenzo, T. Nolan, Y. Okamura, K. Rubin, B. Stadler, and R. Wolfe, eds. (Materials Research Society, Warrendale, Pa., 1998), Vol. 517, pp. 519-524.
  53. O. Zhuromskyy, M. Lohmeyer, N. Bahlmann, P. Hertel, H. Dötsch, and A. F. Popkov, "Analysis of nonreciprocal light propagation in multimode imaging devices," Opt. Quantum Electron. 32, 885-897 (2000).
  54. M. Lohmeyer, L. Wilkens, O. Zhuromskyy, H. Dötsch, and P. Hertel, "Integrated magneto-optic cross strip isolator," Opt. Commun. 189, 251-259 (2001).
  55. L. Wilkens, "Optimierung und Realisierung integriert-optischer Isolatorkonzepte," Ph.D. dissertation (University of Osnabrück, Germany, 2002) (in German).
  56. J. Haisma, A. M. W. Cox, B. H. Koek, D. Mateika, J. A. Pistorius, and E. T. J. M. Smeets, "Heteroepitaxial growth of InP on garnet," J. Cryst. Growth 87, 180-184 (1987).
  57. M. Razeghi, P. L. Meunier, and P. Maurel, "Growth of GaInAs-InP multiquantum wells on garnet (GGG=Gd3Ga5O12) substrate by metalorganic chemical vapor deposition," J. Appl. Phys. 59, 2261-2263 (1986).
  58. H. Yokoi, T. Mizumoto, K. Maru, and Y. Naito, "Direct bonding between InP and rare-earth iron-garnet grown on Gd3Ga5O12 substrate by liquid-phase epitaxy," Electron. Lett. 31, 1612-1613 (1995).
  59. T. Izuhara, J. Fujita, and M. Levy, "Integration of magneto-optical waveguides onto a III-V semiconductor surface," IEEE Photonics Technol. Lett. 14, 167-169 (2002).
  60. H. Yokoi, T. Mizumoto, and Y. Shoji, "Optical nonreciprocal devices with a silicon guiding layer fabricated by wafer bonding," Appl. Opt. 42, 6605-6612 (2003).
  61. R. L. Espinola, T. Izuhara, M.-C. Tsai, R. M. Osgood, Jr., and H. Dötsch, "Magneto-optical nonreciprocal phase shift in garnet/silicon-on-insulator waveguides," Opt. Lett. 29, 941-943 (2004).
  62. N. Sugimoto, H. Terui, A. Tate, Y. Katoh, Y. Yamada, A. Sugita, A. Shibukawa, and Y. Inoue, "A hybrid integrated waveguide isolator on a silica-based planar lightwave circuit," J. Lightwave Technol. 14, 2537-2546 (1996).
  63. L. Zhang, P. J. Chandler, P. D. Townsend, S. J. Field, D. C. Hanna, D. P. Shepherd, and A. C. Tropper, "Characterization of ion-implanted wave-guides in Nd:YAG," J. Appl. Phys. 69, 3440-3446 (1991).
  64. S. J. Field, D. C. Hanna, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, "An efficient, diode-pumped, ion-implanted Nd:GGG planar waveguide laser," Opt. Commun. 86, 161-166 (1991).
  65. A. A. Anderson, C. L. Bonner, D. P. Shepherd, R. W. Eason, C. Grivas, D. S. Gill, and N. Vainos, "Low loss (0.5 dB/cm) Nd:Gd3Ga5O12 waveguide layers grown by pulsed laser deposition," Opt. Commun. 144, 183-186 (1997).
  66. C. T. A. Brown, C. L. Bonner, T. J. Warburton, D. P. Shepherd, A. C. Tropper, and D. C. Hanna, "Thermally bonded planar waveguide lasers," Appl. Phys. Lett. 71, 1139-1141 (1997).
  67. S. J. Field, D. C. Hanna, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, "Ion-implanted Nd:YAG waveguide lasers," IEEE J. Quantum Electron. 27, 428-433 (1991).
  68. I. Chartier, B. Ferrand, D. Pelenc, S. J. Field, D. C. Hanna, A. C. Large, D. P. Shepherd, and A. C. Tropper, "Growth and low-threshold laser oscillation of an epitaxially grown Nd:YAG waveguide," Opt. Lett. 17, 810-812 (1992).
  69. C. L. Bonner, A. A. Anderson, R. W. Eason, D. P. Shepherd, D. S. Gill, C. Grivas, and N. Vainos, "Performance of a low-loss pulsed-laser-deposited Nd:Gd3Ga5O12 waveguide laser at 1.06 and 0.94 µm," Opt. Lett. 22, 988-990 (1997).
  70. S. J. Field, D. C. Hanna, A. C. Large, D. P. Shepherd, A. C. Tropper, P. J. Chandler, P. D. Townsend, and L. Zhang, "Ion-implanted Nd:GGG channel waveguide laser," Opt. Lett. 17, 52-54 (1992).
  71. M. Shimokozono, N. Sugimoto, A. Tate, and Y. Katoh, "Room-temperature operation of an Yb-doped Gd3Ga5O12 buried channel waveguide laser at 1.025 µm wavelength," Appl. Phys. Lett. 68, 2177-2179 (1996).
  72. R. Gerhardt, J. Kleine-Börger, L. Beilschmidt, M. Frommeier, B. Gather, and H. Dötsch, "Efficient channel-waveguide laser in Nd:GGG at 1.062 mm wavelength," Appl. Phys. Lett. 75, 1210-1212 (1999).
  73. J. Schröter, "Wellenleiterlaser in erbiumdotierten epitaktischen Granatfilmen," Ph.D. dissertation (University of Osnabrück, Germany, 2002) (in German).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited