OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: George I. Stegeman
  • Vol. 22, Iss. 10 — Oct. 1, 2005
  • pp: 2121–2128

Asymmetric beam shaping of a diode-bar laser for multipass pumping of a thin-crystal laser

Bryn Jeffries and David W. Coutts  »View Author Affiliations

JOSA B, Vol. 22, Issue 10, pp. 2121-2128 (2005)

View Full Text Article

Acrobat PDF (257 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two-mirror beam shaping of a 94% fill-factor laser diode bar was investigated. We show that optimal output for the purposes of end pumping was achieved by configuring the beam shaper to reformat the single row of 60 emitters into an array containing several emitters in each row. A 15×4 output configuration was used to end pump a Yb:S-FAP laser. A nearly on-axis multipass pumping system was developed to demonstrate how the asymmetry of the beam-shaped pump source can be exploited.

© 2005 Optical Society of America

OCIS Codes
(140.2010) Lasers and laser optics : Diode laser arrays
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3300) Lasers and laser optics : Laser beam shaping
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3580) Lasers and laser optics : Lasers, solid-state
(140.5560) Lasers and laser optics : Pumping

ToC Category:
Lasers and Laser Optics

Bryn Jeffries and David W. Coutts, "Asymmetric beam shaping of a diode-bar laser for multipass pumping of a thin-crystal laser," J. Opt. Soc. Am. B 22, 2121-2128 (2005)

Sort:  Author  |  Year  |  Journal  |  Reset


  1. W. A. Clarkson and D. C. Hanna, "Two-mirror beam-shaping technique for high-power diode bars," Opt. Lett. 21, 375-377 (1996).
  2. J. R. Leger and W. C. Goltsos, "Geometrical transformation of linear diode-laser arrays for longitudinal pumping of solid-state lasers," IEEE J. Quantum Electron. 28, 1088-1100 (1992).
  3. T. Graf and J. E. Balmer, "High-power Nd:YLF laser end pumped by a diode-laser bar," Opt. Lett. 18, 1317-1319 (1993).
  4. C. Gao, H. Laabs, H. Weber, T. Brand, and N. Kugler, "Symmetrization of astigmatic high power diode laser stacks," Opt. Quantum Electron. 31, 1207-1218 (1999).
  5. Y. Liao, K. M. Du, S. Falter, J. Zhang, M. Quade, P. Loosen, and R. Poprawe, "Highly efficient diode-stack, end-pumped Nd:YAG slab laser with symmetrized beam quality," Appl. Opt. 36, 5872-5875 (1997).
  6. S. Yamaguchi, T. Kobayashi, Y. Saito, and K. Chiba, "Collimation of emissions from a high-power multistripe laser-diode bar with multiprism array coupling and focusing to a small spot," Opt. Lett. 20, 898-900 (1995).
  7. T. Y. Fan and A. Sanchez, "Pump source requirements for end-pumped lasers," IEEE J. Quantum Electron. 26, 311-316 (1990).
  8. N. D. Vieira, I. M. Ranieri, L. V. G. Tarelho, N. U. Wetter, S. L. Baldochi, L. Gomes, P. S. F. de Matos, W. de Rossi, G. E. C. Nogueira, L. C. Courrol, E. A. Barbosa, E. P. Maldonado, and S. P. Morato, "Laser development of rare-earth doped crystals," J. Alloys Compd. 344, 231-239 (2002).
  9. W. A. Clarkson and D. C. Hanna, "Efficient Nd:YAG laser end pumped by a 20-W diode-laser bar," Opt. Lett. 21, 869-871 (1996).
  10. K. I. Martin, W. A. Clarkson, and D. C. Hanna, "High-power single-frequency operation, at 1064 nm and 1061.4 nm of a Nd:YAG ring laser end-pumped by a beam-shaped diode bar," Opt. Commun. 135, 89-92 (1997).
  11. N. U. Wetter, P. S. F. de Matos, I. M. Ranieri, L. C. Courrol, and S. P. Morato, "Single frequency, continuously diode-pumped Nd:LiY0.5Gd0.5F4 tunable, microlaser," Opt. Commun. 204, 311-315 (2002).
  12. N. U. Wetter, "Three-fold effective brightness increase of laser diode bar emission by assessment and correction of diode array curvature," Opt. Laser Technol. 33, 181-187 (2001).
  13. C. D. Marshall, S. A. Payne, L. K. Smith, H. T. Powell, W. F. Krupke, and B. H. T. Chai, "1.047-µmYb-Sr5(PO4)3F energy-storage optical amplifier," IEEE J. Sel. Top. Quantum Electron. 1, 67-77 (1995).
  14. C. D. Marshall, L. K. Smith, R. J. Beach, M. A. Emanuel, K. I. Schaffers, J. Skidmore, S. A. Payne, and B. H. T. Chai, "Diode-pumped ytterbium-doped Sr5(PO4)3F laser performance," IEEE J. Quantum Electron. 32, 650-656 (1996).
  15. M. R. Dickinson, L. A. W. Gloster, N. W. Hopps, and T. A. King, "Continuous-wave diode-pumped Yb3+:S-FAP laser," Opt. Commun. 132, 275-278 (1996).
  16. B. Pati, K. F. Wall, and K. I. Schaffers, "Laser performance of Yb:S-FAP in a prismatic side-pumping configuration," in Advanced Solid-State Lasers, M.E.Fermann and L.R.Marshall, eds., Vol. 68 of OSA Trends in Optics and Photonics (Optical Society of America, 2002), pp. 144-149.
  17. B. Pati, Y. Isyanova, K. F. Wall, and P. F. Moulton, "Yb:S-FAP multipass side-pumped amplifier," in Advanced Solid-State Photonics, J.J.Zayhowski, ed., Vol. 83 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), p. 197.
  18. K. I. Schaffers, J. B. Tassano, A. B. Bayramian, and R. C. Morris, "Growth of Yb:S-FAP [Yb3+:Sr5(PO4)3F] crystals for the Mercury laser," J. Cryst. Growth 253, 297-306 (2003).
  19. F. D. Patel, E. C. Honea, J. Speth, S. A. Payne, R. Hutcheson, and R. Equall, "Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG," IEEE J. Quantum Electron. 37, 135-144 (2001).
  20. T. Y. Fan, A. Sanchez, and W. E. DeFoe, "Scalable, end-pumped diode-laser-pumped solid-state laser," Opt. Lett. 14, 1057-1060 (1989).
  21. L. D. DeLoach, S. A. Payne, L. K. Smith, W. L. Kway, and W. F. Krupke, "Laser and spectroscopic properties of Sr5(PO4)3F-Yb," J. Opt. Soc. Am. B 11, 269-276 (1994).
  22. A. Giesen, H. Hugel, A. Voss, K. Wittig, U. Brauch, and H. Opower, "Scalable concept for diode-pumped high-power solid-state lasers," Appl. Phys. B 58, 365-372 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited