OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: G. I. Stegeman
  • Vol. 22, Iss. 11 — Nov. 1, 2005
  • pp: 2437–2443

Study of filamentary damage in synthesized silica induced by chirped femtosecond laser pulses

Satoshi Onda, Wataru Watanabe, Kazuhiro Yamada, Kazuyoshi Itoh, and Junji Nishii  »View Author Affiliations


JOSA B, Vol. 22, Issue 11, pp. 2437-2443 (2005)
http://dx.doi.org/10.1364/JOSAB.22.002437


View Full Text Article

Enhanced HTML    Acrobat PDF (526 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Different filamentary tracks in synthesized silica were induced by varying both the pulse duration and the incident energy of chirped laser pulses under slow-focusing conditions. Short-duration pulses induced filamentary refractive-index change, whereas longer pulses produced scattering damage in filamentary tracks. We report a systematic study on the morphology and birefringence of filamentary refractive-index change and scattering damage.

© 2005 Optical Society of America

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(140.3440) Lasers and laser optics : Laser-induced breakdown
(160.2750) Materials : Glass and other amorphous materials
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(260.5950) Physical optics : Self-focusing
(320.7110) Ultrafast optics : Ultrafast nonlinear optics

ToC Category:
Nonlinear Optics

Citation
Satoshi Onda, Wataru Watanabe, Kazuhiro Yamada, Kazuyoshi Itoh, and Junji Nishii, "Study of filamentary damage in synthesized silica induced by chirped femtosecond laser pulses," J. Opt. Soc. Am. B 22, 2437-2443 (2005)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-22-11-2437


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett.  21, 2023–2025 (1996). [CrossRef] [PubMed]
  2. E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett.  71, 882–884 (1997). [CrossRef]
  3. M. Watanabe, H. B. Sun, S. Juodkazis, T. Takahashi, S. Matsuo, Y. Suzuki, J. Nishii, and H. Misawa, “Three-dimensional optical data storage in vitreous silica,” Jpn. J. Appl. Phys. Part 2  37, L1527–L1530 (1998). [CrossRef]
  4. W. Watanabe, T. Toma, K. Yamada, J. Nishii, K. Hayashi, and K. Itoh, “Optical seizing and merging of voids in silica glass with infrared femtosecond laser pulses,” Opt. Lett.  25, 1669–1671 (2000). [CrossRef]
  5. W. Watanabe and K. Itoh, “Motion of bubble in solid by femtosecond laser pulses,” Opt. Express  10, 603–608 (2002). [CrossRef] [PubMed]
  6. L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses,” Opt. Commun.  171, 279–284 (1999). [CrossRef]
  7. L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Study of damage in fused silica induced by ultra-short IR laser pulses,” Opt. Commun.  191, 333–339 (2001). [CrossRef]
  8. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation infused silica,” Phys. Rev. Lett.  89, 186601 (2002). [CrossRef]
  9. K. Yamada, W. Watanabe, T. Toma, J. Nishii, and K. Itoh, “In situ observation of photoinduced refractive index changes in filaments formed in glasses by femtosecond laser pulses,” Opt. Lett.  26, 19–21 (2001). [CrossRef]
  10. M. Kamata and M. Obara, “Control of the refractive index change in fused silica glasses induced by a loosely focused femtosecond laser,” Appl. Phys. A  A78, 85–88 (2004). [CrossRef]
  11. W. Watanabe, T. Asano, K. Yamada, K. Itoh, and J. Nishii, “Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses,” Opt. Lett.  28, 2491–2493 (2003). [CrossRef] [PubMed]
  12. K. Yamada, W. Watanabe, J. Nishii, and K. Itoh, “Anisotropic refractive-index change in silica glass induced by self-trapped filament of linearly polarized femtosecond laser pulses,” J. Appl. Phys.  93, 1889–1892 (2003). [CrossRef]
  13. K. Yamada, W. Watanabe, J. Nishii, and K. Itoh, “Volume grating induced by a self-trapped long filament of femtosecond laser pulses in silica glass,” Jpn. J. Appl. Phys. Part 1  42, 6916–6919 (2003). [CrossRef]
  14. X. Wang, H. Guo, H. Yang, H. Jiang, and Q. Gong, “Fabrication of beam shapers in the bulk of fused silica by femtosecond laser pulses,” Appl. Opt.  43, 4571–4574 (2004). [CrossRef] [PubMed]
  15. K. Yamada, W. Watanabe, Y. Li, K. Itoh, and J. Nishii, “Multilevel approximation of phase-type diffractive lens in silica glass induced by filamentation of femtosecond laser pulses,” Opt. Lett.  29, 1846–1848 (2004). [CrossRef] [PubMed]
  16. H. Guo, H. Jiang, Y. Fang, C. Peng, H. Yang, Y. Li, and Q. Gong, “The pulse duration dependence of femtosecond laser induced refractive index modulation in fused silica,” J. Opt. A  6, 787–790 (2004). [CrossRef]
  17. The GDD of the objective lens (M DPlan 5×, Olympus Corp.) at the wavelength of 800 nm is 1150 fs2. Communication with Olympus Corporation. Corporate Research and Development Center Development 2, Optical Development Department.
  18. D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Hermann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett.  72, 1442–1444 (1998). [CrossRef]
  19. A. Brodeur and S. L. Chin, “Ultrafast white-light continuum generation and self-focusing in transparent condensed media,” J. Opt. Soc. Am. B  16, 637–650 (1999). [CrossRef]
  20. R. W. Boyd, Nonlinear Optics (Academic, 1992).
  21. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am.  55, 1205–1209 (1965). [CrossRef]
  22. N. Bloembergen, “Laser-induced electric breakdown in solid,” IEEE J. Quantum Electron.  10, 375–386 (1974). [CrossRef]
  23. E. Yablonovitch, “Optical dielectric strength of alkali-halide crystals obtained by laser-induced breakdown,” Appl. Phys. Lett.  19, 495–497 (1971). [CrossRef]
  24. N. Fukata, Y. Yamamoto, K. Murakami, M. Hase, and M. Kitajima, “In situ spectroscopic measurement of transmitted light related to defect formation in SiO2 during femtosecond laser irradiation,” Appl. Phys. Lett.  83, 3495–3497 (2003). [CrossRef]
  25. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett.  26, 1726–1728 (2001). [CrossRef]
  26. B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express  11, 1070–1079 (2003). [CrossRef] [PubMed]
  27. E. Bricchi, B. G. Klappauf, and P. G. Kazansky, “Form birefringence and negative index change created by femtosecond direct writing in transparent materials,” Opt. Lett.  29, 119–121 (2004). [CrossRef] [PubMed]
  28. A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B  19, 2469–2504 (2002). [CrossRef]
  29. A. Kaiser, B. Rethfeld, M. Vicanek, and G. Simon, “Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses,” Phys. Rev. B  61, 11437–11450 (2000). [CrossRef]
  30. A. Saliminia, N. T. Nguyen, S. L. Chin, and R. Vallée, “The influence of self-focusing and filamentation on refractive index modifications in fused silica using intense femtosecond pulses,” Opt. Commun.  241, 529–538 (2004). [CrossRef]
  31. Z. Wu, H. Jiang, Q. Sun, H. Yang, and Q. Gong, “Filamentation and temporal reshaping of a femtosecond pulse in fused silica,” Phys. Rev. A  68, 063820 (2003). [CrossRef]
  32. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Optical ablation by high-power short-pulse lasers,” J. Opt. Soc. Am. B  13, 459–467 (1996). [CrossRef]
  33. M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond optical breakdown in dielectrics,” Phys. Rev. Lett.  80, 4076–4079 (1998). [CrossRef]
  34. N. T. Nguyen, A. Saliminia, W. Liu, S. L. Chin, and R. Vallée, “Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses,” Opt. Lett.  28, 1591–1593 (2003). [CrossRef] [PubMed]
  35. A. Rosenfeld, M. Lorenz, R. Stoian, and D. Ashkenasi, “Ultrashort-laser-pulse damage threshold of transparent materials and the role of incubation,” Appl. Phys. A  A69, S373–S376 (1999). [CrossRef]
  36. M. Lenzner, J. Krüger, W. Kautek, and F. Krausz, “Incubation of laser ablation in fused silica with 5-fs pulses,” Appl. Phys. A  69, 465–466 (1999). [CrossRef]
  37. S. Küper and M. Stuke, “Femtosecond uv Excimer laser ablation,” Appl. Phys. B  44, 199–204 (1987). [CrossRef]
  38. M. J. Soileau, W. E. Williams, N. Mansour, and E. W. Vanstryland, “Laser-induced damage and the role of self-focusing,” Opt. Eng.  28, 1133–1144 (1989). [CrossRef]
  39. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett.  21, 1729–1731 (1996). [CrossRef] [PubMed]
  40. J. Qiu, K. Miura, and K. Hirao, “Three-dimensional optical memory using glasses as a recording medium through a multi-photon absorption process,” Jpn. J. Appl. Phys. Part 1  37, 2263–2266 (1998). [CrossRef]
  41. M. Will, S. Nolte, B. N. Chichkov, and A. Tunnermann, “Optical properties of waveguides fabricated in fused silica by femtosecond laser pulses,” Appl. Opt.  41, 4360–4364 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited