OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Vol. 22, Iss. 5 — May. 1, 2005
  • pp: 1100–1104

Gaussian-mode analysis of waveguide-enhanced Kerr-type nonlinearity of optical fibers and photonic wires

Aleksei Zheltikov  »View Author Affiliations


JOSA B, Vol. 22, Issue 5, pp. 1100-1104 (2005)
http://dx.doi.org/10.1364/JOSAB.22.001100


View Full Text Article

Acrobat PDF (134 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The Gaussian approximation of waveguide modes is used to analyze a Kerr-type nonlinearity of an optical fiber. This analysis gives physical insights into the behavior of the optimal transverse size of a waveguide providing the maximum enhancement of nonlinear-optical processes as a function of the core-cladding refractive-index step and the radiation wavelength. We show that, for the maximum enhancement of nonlinear-optical processes in a fiber where only the core is nonlinear, the effective mode area needs to be slightly larger than its minimum value. In the case of fused-silica fibers, the maximum enhancement of nonlinear-optical processes is achieved with fiber core diameters that are less than the radiation wavelength.

© 2005 Optical Society of America

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4370) Nonlinear optics : Nonlinear optics, fibers

Citation
Aleksei Zheltikov, "Gaussian-mode analysis of waveguide-enhanced Kerr-type nonlinearity of optical fibers and photonic wires," J. Opt. Soc. Am. B 22, 1100-1104 (2005)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-22-5-1100


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, "Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices," Nature (London) 409, 66-69 (2001).
  2. J. C. Johnson, H.-J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, "Single gallium nitride nanowire lasers," Nat. Mater. 1, 106-110 (2002).
  3. P. St. J. Russell, "Photonic crystal fibers," Science 299, 358-362 (2003).
  4. V. C. Sundar, A. D. Yablon, J. L. Grazul, M. Ilan, and J. Aizenberg, "Fibre-optical features of a glass sponge," Nature (London) 424, 899-900 (2003).
  5. D. Akimov, M. Schmitt, R. Maksimenka, K. Dukel'skii, Y. Kondrat'ev, A. Kohkhlov, V. Shevandin, W. Kiefer, and A. M. Zheltikov, "Supercontinuum generation in a multiple-submicron-core microstructure fiber: toward limiting waveguide enhancement of nonlinear-optical processes," Appl. Phys. B: Lasers Opt. 77, 299-305 (2003).
  6. D. A. Akimov, E. E. Serebryannikov, A. M. Zheltikov, M. Schmitt, R. Maksimenka, W. Kiefer, K. V. Dukel'skii, V. S. Shevandin, Yu. N. Kondrat'ev, "Efficient anti-Stokes generation through phase-matched four wave mixing in higher-order modes of a microstructure fiber," Opt. Lett. 28, 1948-1950 (2003).
  7. S. O. Konorov and A. M. Zheltikov, "Frequency conversion of subnanojoule femtosecond laser pulses in a microstructure fiber for photochromism initiation," Opt. Express 11, 2440-2445 (2003), http://www.opticsexpress.org.
  8. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature (London) 426, 816-819 (2003).
  9. E. C. Mägi, P. Steinvurzel, and B. J. Eggleton, "Tapered photonic crystal fibers," Opt. Express 12, 776-784 (2004), http://www.opticsexpress.org.
  10. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. St. J. Russell, and M. W. Mason, "Supercontinuum generation in submicron fibre waveguides," Opt. Express 12, 2864-2869 (2004), http://www.opticsexpress.org.
  11. Y. K. Lizé, E. C. Mägi, V. G. Ta'eed, J. A. Bolger, P. Steinvurzel, and B. J. Eggleton, "Microstructured optical fiber photonic wires with subwavelength core diameter," Opt. Express 12, 3209-3217 (2004), http://www.opticsexpress.org.
  12. M. A. Foster and A. L. Gaeta, "Ultra-low threshold supercontinuum generation in sub-wavelength waveguides," Opt. Express 12, 3137-3143 (2004), http://www.opticsexpress.org.
  13. P. Dumais, F. Gonthier, S. Lacroix, J. Bures, A. Villeneuve, P. G. J. Wigley, and G. I. Stegeman, "Enhanced self-phase modulation in tapered fibers," Opt. Lett. 18, 1996-1998 (1993).
  14. A. M. Zheltikov, "The physical limit for the waveguide enhancement of nonlinear-optical processes," Opt. Spectrosc. 95, 410-415 (2003).
  15. A. M. Zheltikov, "Limiting efficiencies of nonlinear-optical processes in microstructure fibers," JETP 97, 505-521 (2003).
  16. M. A. Foster, K. D. Moll, and A. L. Gaeta, "Optimal waveguide dimensions for nonlinear interactions," Opt. Express 12, 2880-2887 (2004), http://www.opticsexpress.org.
  17. V. Finazzi, T. M. Monro, and D. J. Richardson, "The role of confinement loss in highly nonlinear silica holey fibers," IEEE Photonics Technol. Lett. 15, 1246-1248 (2003).
  18. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Kluwer Academic, Dordrecht, The Netherlands, 1983).
  19. G. P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, Calif., 1989).
  20. L. Tong, J. Lou, and E. Mazur, "Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides," Opt. Express 12, 1025-1035 (2003), http://www.opticsexpress.org.
  21. M. D. Nielsen and N. A. Mortensen, "Photonic crystal fiber design based on the V-parameter," Opt. Express 11, 2762-2768 (2003), http://www.opticsexpress.org.
  22. M. D. Nielsen, N. A. Mortensen, J. R. Folkenberg, and A. Bjarklev, "Mode-field radius of photonic crystal fibers expressed by the V-parameter," Opt. Lett. 28, 2309-2311 (2003).
  23. M. Koshiba and K. Saitoh, "Applicability of classical optical fiber theories to holey fibers," Opt. Lett. 29, 1739-1741 (2004).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited