OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 10 — Oct. 1, 2006
  • pp: 2051–2058

Mode-area scaling of helical-core, dual-clad fiber lasers and amplifiers using an improved bend-loss model

Z. Jiang and J. R. Marciante  »View Author Affiliations

JOSA B, Vol. 23, Issue 10, pp. 2051-2058 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (151 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



For small-bend radii, the waveguide condition for total internal reflection is violated in a large angular spread of incident angles at the interface of the fiber core. To account for this, we derived an improved semianalytic bend-loss model that allows for the propagation of radiated fields outside the plane of the fiber bend. This new model is applied to large-mode-area helical-core fibers (which require small-bend radii) for use as high-power fiber lasers and amplifiers. In particular, the limits of scaling the mode area while maintaining good beam quality are explored. Single-mode operation is expected for a 40 μ m core with a 0.10 numerical aperture, and scaling to a 100 μ m core diameter is shown to be possible. Additionally, helical fibers are shown to readily perform where conventional coiled fibers are not appropriate to operate long term.

© 2006 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(130.2790) Integrated optics : Guided waves
(140.3510) Lasers and laser optics : Lasers, fiber
(230.7370) Optical devices : Waveguides

ToC Category:
Lasers and Laser Optics

Original Manuscript: November 18, 2005
Revised Manuscript: May 17, 2006
Manuscript Accepted: June 28, 2006

Z. Jiang and J. R. Marciante, "Mode-area scaling of helical-core, dual-clad fiber lasers and amplifiers using an improved bend-loss model," J. Opt. Soc. Am. B 23, 2051-2058 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1989).
  2. O. Schmidt, F. Roser, S. Linke, T. Schreiber, J. Limpert, S. Ermeneux, P. Yvernault, F. Salin, and A. Tunnermann, "High energy and high average power Q-switched photonic crystal fiber laser," in Advanced Solid-State Photonics 2006 (Optical Society of America, 2006).
  3. U. H. Manyam, B. Samson, V. Khitrov, D. P. Machewirth, J. Abrmczyk, N. Jacobson, J. Farroni, D. Guertin, A. Carter, and K. Tankala, "Laser fibers designed for single polarization output," in 2004 OSA Topical Meeting on Advanced Solid-State Photonics, G.J.Quarles, ed., Vol. 94of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), pp. 118-122.
  4. H. L. Offerhaus, N. G. Broderick, D. J. Richardson, R. Sammut, J. Caplen, and L. Dong, "High-energy single-transverse-mode Q-switched fiber laser based on a multimode large-mode-area erbium-doped fiber," Opt. Lett. 23, 1683-1685 (1998). [CrossRef]
  5. J. M. Sousa and O. G. Okhotnikov, "Multimode Er-doped fiber for single-transverse-mode amplification," Appl. Phys. Lett. 74, 1528-1530 (1999). [CrossRef]
  6. J. A. Alvarez-Chavez, H. L. Offerhaus, J. Nilsson, P. W. Turner, W. A. Clarkson, and D. J. Richardson, "High-energy, high-power ytterbium-doped Q-switched fiber laser," Opt. Lett. 25, 37-39 (2000). [CrossRef]
  7. C. C. Renaud, R. J. Selvas-Aguilar, J. Nilsson, P. W. Turner, and A. B. Grudinin, "Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40 nm," IEEE Photon. Technol. Lett. 11, 976-978 (1999). [CrossRef]
  8. M. Hofer, M. E. Fermann, A. Galvanauskas, D. Harter, and R. S. Windeler, "Low-noise amplification of high-power pulses in multimode fibers," IEEE Photon. Technol. Lett. 11, 650-652 (1999). [CrossRef]
  9. U. Griebner, R. Koch, H. Schönnagel, and R. Grunwald, "Efficient laser operation with nearly diffraction-limited output from a diode-pumped heavily Nd-doped multimode fiber," Opt. Lett. 21, 266-268 (1996). [CrossRef] [PubMed]
  10. U. Griebner and H. Schönnagel, "Laser operation with nearly diffraction-limited output from a Yb:YAG multimode channel waveguide," Opt. Lett. 24, 750-752 (1999). [CrossRef]
  11. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  12. M. Lehtonen, G. Genty, and H. Ludvigsen, "Tapered microstructured fibers for efficient coupling to optical waveguides: a numerical study," Appl. Phys. B 81, 295-300 (2005). [CrossRef]
  13. P. Koplow, D. A. V. Kliner, and L. Goldberg, "Single-mode operation of a coiled multimode fiber amplifier," Opt. Lett. 25, 442-444 (2000). [CrossRef]
  14. D. Marcuse, "Curvature loss formula for optical fibers," J. Opt. Soc. Am. 66, 216-220 (1976). [CrossRef]
  15. Optical Fiber Cabling Components Standard ANSI/TIA/EIA 568B.3.
  16. G. T. Moore and J. R. Marciante, "Cladding-pumped fiber with helical rare-earth-doped core for fiber lasers and amplifiers," U.S. patent 6,650,664 (November 18, 2003).
  17. R. D. Birch, "Fabrication and characterisation of circularly birefringent helical fibers," Electron. Lett. 23, 50-52 (1987). [CrossRef]
  18. P. Wang, L. J. Cooper, J. K. Sahu, and W. A. Clarkson, "Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser," Opt. Lett. 31, 226-228 (2006). [CrossRef] [PubMed]
  19. D. Marcuse, "Radiation loss of a helically deformed optical fiber," J. Opt. Soc. Am. 66, 1025-1031 (1976). [CrossRef]
  20. A. Altintas and J. D. Love, "Effective cut-offs for modes on helical fibers," Opt. Quantum Electron. 22, 213-226 (1990). [CrossRef]
  21. M. L. Calvo and R. F. Alvarez-Estrada, "Three-dimensional analysis of bending losses in dielectric optical waveguides with arbitrary refractive-index profile," J. Opt. Soc. Am. A 4, 683-693 (1987). [CrossRef]
  22. D. Marcuse, "Bend loss of slab and fiber modes computed with diffraction theory," IEEE J. Quantum Electron. 29, 2957-2961 (1993). [CrossRef]
  23. K. S. Kaufman, R. Terras, and R. F. Mathis, "Curvature loss in multimode optical fibers," J. Opt. Soc. Am. 71, 1513-1518 (1981). [CrossRef]
  24. D. Marcuse, "Field deformation and loss caused by curvature of optical fibers," J. Opt. Soc. Am. 66, 311-320 (1976). [CrossRef]
  25. J. I. Sakai and T. Kimura, "Analytical bending loss formula of optical fibers with field deformation," Radio Sci. 17, 21-29 (1982). [CrossRef]
  26. J. M. Fini, "Bend-resistant design of conventional and microstructure fibers with very large mode area," Opt. Express 14, 69-81 (2006). [CrossRef] [PubMed]
  27. G. R. Hadley, R. L. Farrow, and A. V. Smith, "Bent-waveguide modeling of large-mode-area double-clad fibers for high-power lasers," in Fiber Lasers III, A.J.Brown, J.Nilsson, D.J.Harter, and A.Tünnermann, eds., Proc. SPIE 61026102152006).
  28. A. Harris and P. Castle, "Bend loss measurements on high numerical aperture single-mode fibers as a function of wavelength and bend radius," J. Lightwave Technol. 4, 34-40 (1986). [CrossRef]
  29. D. Gloge, "Optical power flow in multimode fibers," Bell Syst. Tech. J. 51, 1767-1783 (1972).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited