OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 10 — Oct. 1, 2006
  • pp: 2107–2112

Refractive index changes in lithium niobate crystals by high-energy particle radiation

Konrad Peithmann, Mohammad-Reza Zamani-Meymian, Matz Haaks, Karl Maier, Birk Andreas, and Ingo Breunig  »View Author Affiliations

JOSA B, Vol. 23, Issue 10, pp. 2107-2112 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (205 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Irradiation of lithium niobate crystals with 41 MeV He 3 ions causes strong changes of the ordinary and extraordinary refractive indexes. We present a detailed study of this effect. Small fluence of irradiation already yields refractive index changes about 5 × 10 4 ; the highest values reach 3 × 10 3 . These index modulations are stable up to 100 ° C and can be erased thermally, for which temperatures up to 500 ° C are required. A direct correlation between the refractive index changes and the produced lattice vacancies is found.

© 2006 Optical Society of America

OCIS Codes
(160.3730) Materials : Lithium niobate
(190.0190) Nonlinear optics : Nonlinear optics
(190.5330) Nonlinear optics : Photorefractive optics

ToC Category:

Original Manuscript: March 27, 2006
Revised Manuscript: June 13, 2006
Manuscript Accepted: June 23, 2006

Konrad Peithmann, Mohammad-Reza Zamani-Meymian, Matz Haaks, Karl Maier, Birk Andreas, and Ingo Breunig, "Refractive index changes in lithium niobate crystals by high-energy particle radiation," J. Opt. Soc. Am. B 23, 2107-2112 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, Holographic Data Storage (Springer Verlag, 2000).
  2. R. M. Shelby, J. A. Hoffnagle, G. W. Burr, C. M. Jefferson, M.-P. Bernal, H. Coufal, R. K. Grygier, H. Guenther, R. M. Macfarlane, and G. T. Sincerbox, "Pixel-matched holographic data storage with megabit pages," Opt. Lett. 22, 1509-1511 (1997). [CrossRef]
  3. V. Leyva, G. A. Rakuljic, and B. O'Conner, "Narrow bandwidth volume holographic optical filter operating at the Kr transition at 1547.82 nm," Appl. Phys. Lett. 65, 1079-1081 (1994). [CrossRef]
  4. S. Breer, H. Vogt, I. Nee, and K. Buse, "Low-crosstalk WDM by Bragg diffraction from thermally fixed reflection holograms in lithium niobate," Electron. Lett. 34, 2419-2421 (1999). [CrossRef]
  5. R. C. Alferness, R. V. Schmidt, and E. H. Turner, "Characteristics of Ti-diffused lithium niobate optical directional couplers," Appl. Opt. 18, 4012-4016 (1979). [CrossRef] [PubMed]
  6. V. Ramaswamy, M. D. Divino, and R. D. Standley, "Balanced bridge modulator switch using Ti-diffusedLiNbO3 strip waveguides," Appl. Phys. Lett. 32, 644-646 (1978). [CrossRef]
  7. C. Becker, A. Greiner, T. Oesselke, A. Pape, W. Sohler, and H. Suche, "Integrated optical Ti:Er:LiNbO3 distributed Bragg reflector laser with a fixed photorefractive grating," Opt. Lett. 23, 1194-1196 (1998). [CrossRef]
  8. R. V. Schmidt and I. P. Kaminow, "Metal diffused optical waveguides in LiNbO3," Appl. Phys. Lett. 25, 458-460 (1974). [CrossRef]
  9. D. Kip, "Photorefractive waveguides in oxide crystals: fabrication, properties, and applications," Appl. Phys. B 67, 131-150 (1998). [CrossRef]
  10. G. L. Destefanis, P. D. Townsend, and J. P. Galliard, "Optical waveguides in LiNbO3 formed by ion implantation of helium," Appl. Phys. Lett. 32, 293-294 (1978). [CrossRef]
  11. H. Hu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, "Extraordinary refractive index increase in lithium niobate caused by low-dose ion implantation," Appl. Opt. 40, 3759-3761 (2001). [CrossRef]
  12. H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, "Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation," J. Appl. Phys. 89, 5224-5226 (2001). [CrossRef]
  13. P. J. Chandler and P. D. Townsend, "Detailed analysis of refractive index effects produced by ion implantation," Nucl. Instrum. Methods Phys. Res. B 19/20, 921-926 (1987). [CrossRef]
  14. E. Glavas, L. Zhang, P. J. Chandler, and P. D. Townsend, "Thermal stability of ion implanted LiTaO3 and LiNbO3 optical waveguides," Nucl. Instrum. Methods Phys. Res. B 32, 45-50 (1988). [CrossRef]
  15. L. Zhang, P. J. Chandler, and P. D. Townsend, "Optical analysis of damage profiles in ion implanted LiNbO3," Nucl. Instrum. Methods Phys. Res. B 59/60, 1147-1152(1991). [CrossRef]
  16. J. Olivares, G. García, A. García-Navarro, F. Agulló-López, O. Caballero, and A. García-Cabañes, "Generation of high-confinement step-like optical waveguides in LiNbO3 by swift heavy ion-beam irradiation," Appl. Phys. Lett. 86, 183501 (2005). [CrossRef]
  17. B. Andreas, K. Peithmann, K. Buse, and K. Maier, "Modification of the refractive index of lithium niobate crystals by transmission of high-energy He2+4 and D+ particles," Appl. Phys. Lett. 84, 3813-3815 (2004). [CrossRef]
  18. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, 1985).
  19. B. Andreas, I. Breunig, and K. Buse, "Modeling of x-ray induced refractive index changes in poly(methyl methacrylate)," ChemPhysChem 6, 1544-1553 (2005). [CrossRef] [PubMed]
  20. K. Peithmann, A. Wiebrock, K. Buse, and E. Krätzig, "Low-spatial frequency refractive index changes in iron-doped lithium niobate crystals upon illumination with a focused continuous-wave laser beam," J. Opt. Soc. Am. B 17, 586-592 (2000). [CrossRef]
  21. K. Buse, S. Breer, K. Peithmann, S. Kapphan, M. Gao, and E. Krätzig, "Origin of thermal fixing in photorefractive lithium niobate crystals," Phys. Rev. B 56, 1225-1235 (1997). [CrossRef]
  22. K. Peithmann, A. Wiebrock, and K. Buse, "Photorefractive properties of highly-doped lithium niobate crystals in the visible and near-infrared," Appl. Phys. B 68, 777-784 (1999). [CrossRef]
  23. M. Luennemann, U. Hartwig, and K. Buse, "Improvements of sensitivity and refractive index changes in photorefractive lithium niobate crystals by application of extremely large external electric fields," J. Opt. Soc. Am. B 20, 1643-1648 (2003). [CrossRef]
  24. J. J. Amodei and D. L. Staebler, "Holographic pattern fixing in electro-optic crystals," Appl. Phys. Lett. 18, 540-542 (1971). [CrossRef]
  25. I. Nee, K. Buse, F. Havermeyer, R. A. Rupp, M. Fally, and R. P. May, "Neutron diffraction from thermally fixed gratings in photorefractive lithium niobate crystals," Phys. Rev. B 60, R9896-R9899 (1999). [CrossRef]
  26. D. P. Birnie III, "Analysis of diffusion in lithium niobate," J. Mater. Sci. 28, 302-315 (1993). [CrossRef]
  27. R. S. Weis and T. K. Gaylord, "Lithium niobate: summary of physical properties and crystal structure," Appl. Phys. A 37, 191-203 (1985). [CrossRef]
  28. M. Jazbinsek and M. Zgonik, "Material tensor parameters of LiNbO3 relevant for electro- and elasto-optics," Appl. Phys. B 74, 407-414 (2002). [CrossRef]
  29. K. Peithmann, M.-R. Zamani-Meymian, M. Haaks, K. Maier, B. Andreas, K. Buse, and H. Modrow, "Fabrication of embedded waveguides in lithium niobate crystals by radiation damage," Appl. Phys. B 82, 419-422 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited