OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 11 — Nov. 1, 2006
  • pp: 2317–2322

Numerical aperture dependence of damage and supercontinuum generation from femtosecond laser pulses in bulk fused silica

Jonathan B. Ashcom, Rafael R. Gattass, Chris B. Schaffer, and Eric Mazur  »View Author Affiliations

JOSA B, Vol. 23, Issue 11, pp. 2317-2322 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (154 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Competing nonlinear optical effects are involved in the interaction of femtosecond laser pulses with transparent dielectrics: supercontinuum generation and multiphoton-induced bulk damage. We measured the threshold energy for supercontinuum generation and bulk damage in fused silica using numerical apertures (NAs) ranging from 0.01 to 0.65. The threshold for supercontinuum generation exhibits a minimum near 0.05 NA and increases quickly above 0.1 NA. For NAs greater than 0.25, we observe no supercontinuum generation. The extent of the blue broadening of the supercontinuum spectrum decreases significantly as the NA is increased from 0.01 to 0.08, showing that weak focusing is important for generating the broadest supercontinuum spectrum. Using a light-scattering technique to detect the onset of bulk damage, we confirmed bulk damage at all NAs studied. At a high NA, the damage threshold is well below the critical power for self-focusing.

© 2006 Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(160.6030) Materials : Silica
(260.5950) Physical optics : Self-focusing
(320.2250) Ultrafast optics : Femtosecond phenomena

ToC Category:

Original Manuscript: January 13, 2006
Revised Manuscript: July 18, 2006
Manuscript Accepted: July 23, 2006

Jonathan B. Ashcom, Rafael R. Gattass, Chris B. Schaffer, and Eric Mazur, "Numerical aperture dependence of damage and supercontinuum generation from femtosecond laser pulses in bulk fused silica," J. Opt. Soc. Am. B 23, 2317-2322 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, "Three-dimensional optical storage inside transparent materials," Opt. Lett. 21, 2023-2025 (1996). [CrossRef] [PubMed]
  2. A. C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, "Short-pulse laser damage in transparent materials as a function of pulse duration," Phys. Rev. Lett. 82, 3883-3886 (1999). [CrossRef]
  3. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Nanosecond-to-femtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749-1761 (1996). [CrossRef]
  4. D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Herrmann, and E. E. B. Cambell, "Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials," Appl. Phys. Lett. 72, 1442-1444 (1998). [CrossRef]
  5. K. Yamada, W. Watanabe, T. Toma, K. Itoh, and J. Nishii, "In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses," Opt. Lett. 26, 19-21 (2001). [CrossRef]
  6. R. R. Alfano and S. L. Shapiro, "Observation of self-phase modulation and small-scale filaments in cystals and glasses," Phys. Rev. Lett. 24, 592-594 (1970). [CrossRef]
  7. A. Brodeur and S. L. Chin, "Ultrafast white-light continuum generation and self-focusing in transparent condensed media," J. Opt. Soc. Am. B 16, 637-650 (1999). [CrossRef]
  8. A. Brodeur and S. L. Chin, "Band-gap dependence of the ultrafast white-light continuum," Phys. Rev. Lett. 80, 4406-4409 (1998). [CrossRef]
  9. N. T. Nguyen, A. Saliminia, W. Liu, S. L. Chin, and R. Vallee, "Optical breakdown versus filamentation in fused silica by use of femtosecond infrared laser pulses," Opt. Lett. 28, 1591-1593 (2003). [CrossRef] [PubMed]
  10. F. A. Ilkov, L. S. Ilkova, and S. L. Chin, "Supercontinuum generation versus optical-breakdown in CO2 gas," Opt. Lett. 18, 681-683 (1993). [CrossRef] [PubMed]
  11. Q. Feng, J. V. Moloney, A. C. Newell, and E. M. Wright, "Laser-induced breakdown versus self-focusing for focused picosecond pulses in water," Opt. Lett. 20, 1958-1960 (1995). [CrossRef] [PubMed]
  12. W. Liu, O. Kosareva, I. S. Golubtsov, A. Iwasaki, A. Becker, V. P. Kandidov, and S. L. Chin, "Femtosecond laser pulse filamentation versus optical breakdown in H2O," Appl. Phys. B 76, 215-229 (2003). [CrossRef]
  13. M. R. Junnarkar, "Short pulse propagation in tight focusing conditions," Opt. Commun. 195, 273-292 (2001). [CrossRef]
  14. A. L. Gaeta, "Catastrophic collapse of ultrashort pulses," Phys. Rev. Lett. 84, 3582-3585 (2000). [CrossRef] [PubMed]
  15. J. H. Marburger, "Self-focusing: theory," Prog. Quantum Electron. 4, 35-110 (1975). [CrossRef]
  16. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley Series in Pure and Applied Optics (Wiley, 1991), pp. xviii.
  17. M. Muller, J. Squier, and G. J. Brakenhoff, "Measurement of femtosecond pulses in the focal point of a high-numerical-aperture lens by two-photon absorption," Opt. Lett. 20, 1038-1040 (1995). [CrossRef] [PubMed]
  18. C. B. Schaffer, A. Brodeur, and E. Mazur, "Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses," Meas. Sci. Technol. 12, 1784-1794 (2001). [CrossRef]
  19. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Optical ablation by high-power short-pulse lasers," J. Opt. Soc. Am. B 13, 459-468 (1996). [CrossRef]
  20. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7ns to 150fs," Appl. Phys. Lett. 64, 3071-3073 (1994). [CrossRef]
  21. C. W. Carr, M. D. Feit, A. M. Rubenchik, P. De Mange, S. O. Kucheyev, M. D. Shirk, H. B. Radousky, and S. G. Demos, "Radiation produced by femtosecond laser-plasma interaction during dielectric breakdown," Opt. Lett. 30, 661-663 (2005). [CrossRef] [PubMed]
  22. W. L. Smith, P. Liu, and N. Bloembergen, "Superbroadening in H2O and D2O by self-focused picosecond pulses from a YAlG:Nd laser," Phys. Rev. A 15, 2396-2403 (1977). [CrossRef]
  23. P. B. Corkum, C. Rolland, and T. Srinivasanrao, "Supercontinuum generation in gases," Phys. Rev. Lett. 57, 2268-2271 (1986). [CrossRef] [PubMed]
  24. J. K. Ranka, R. W. Schirmer, and A. L. Gaeta, "Observation of pulse splitting in nonlinear dispersive media," Phys. Rev. Lett. 77, 3783-3786 (1996). [CrossRef] [PubMed]
  25. S. A. Akhmanov, R. V. Khokhlov, and A. P. Sukhorukov, "Self-focusing, self-defocusing and self-modulation of laser beams," in Laser Handbook, F.T.Arecchi, E.O.Schulz-Dubois, and M.L.Stitch, eds. (North-Holland, American Elsevier, 1972).
  26. D. Du, X. Liu, and G. Mourou, "Reduction of multi-photon ionization in dielectrics due to collisions," Appl. Phys. B 63, 617-621 (1996). [CrossRef]
  27. M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, "Femtosecond optical breakdown in dielectrics," Phys. Rev. Lett. 80, 4076-4079 (1998). [CrossRef]
  28. D. von der Linde and H. Schuler, "Breakdown threshold and plasma formation in femtosecond laser-solid interaction," J. Opt. Soc. Am. B 13, 216-222 (1996). [CrossRef]
  29. W. Kautek, J. Kruger, M. Lenzner, S. Sartania, C. Spielmann, and F. Krausz, "Laser ablation of dielectrics with pulse durations between 20fs and 3ps," Appl. Phys. Lett. 69, 3146-3148 (1996). [CrossRef]
  30. C. B. Schaffer, A. O. Jamison, and E. Mazur, "Morphology of femtosecond laser-induced structural changes in bulk transparent materials," Appl. Phys. Lett. 84, 1441-1443 (2004). [CrossRef]
  31. F. Demartini, C. H. Townes, T. K. Gustafso, and P. L. Kelley, "Self-steepening of light pulses," Phys. Rev. 164, 312-323 (1967). [CrossRef]
  32. J. E. Rothenberg, "Space-time focusing: breakdown of the slowly varying envelope approximation in the self-focusing of femtosecond pulses," Opt. Lett. 17, 1340-1342 (1992). [CrossRef] [PubMed]
  33. O. M. Efimov, K. Gabel, S. V. Garnov, L. B. Glebov, S. Grantham, M. Richardson, and M. J. Soileau, "Color-center generation in silicate glasses exposed to infrared femtosecond pulses," J. Opt. Soc. Am. B 15, 193-199 (1998). [CrossRef]
  34. D. C. Allan, C. Smith, N. F. Borrelli, and T. P. Seward, "193-nm excimer-laser-induced densification of fused silica," Opt. Lett. 21, 1960-1962 (1996). [CrossRef] [PubMed]
  35. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguides--application to reflection filter fabrication," Appl. Phys. Lett. 32, 647-649 (1978). [CrossRef]
  36. M. Mlejnek, M. Kolesik, E. M. Wright, and J. V. Moloney, "Recurrent femtosecond pulse collapse in air due to plasma generation: numerical results," Math. Comput. Simul. 56, 563-570 (2001). [CrossRef]
  37. M. Mlejnek, E. M. Wright, and J. V. Moloney, "Dynamic spatial replenishment of femtosecond pulses propagating in air," Opt. Lett. 23, 382-384 (1998). [CrossRef]
  38. A. Talebpour, S. Petit, and S. L. Chin, "Re-focusing during the propagation of a focused femtosecond Ti:sapphire laser pulse in air," Opt. Commun. 171, 285-290 (1999). [CrossRef]
  39. W. Liu, S. L. Chin, O. Kosareva, I. S. Golubtsov, and V. P. Kandidov, "Multiple refocusing of a feratosecond laser pulse in a dispersive liquid (methanol)," Opt. Commun. 225, 193-209 (2003). [CrossRef]
  40. Z. X. Wu, H. B. Jiang, L. Luo, H. C. Guo, H. Yang, and Q. H. Gong, "Multiple foci and a long filament observed with focused femtosecond pulse propagation in fused silica," Opt. Lett. 27, 448-450 (2002). [CrossRef]
  41. Z. X. Wu, H. B. Jiang, H. Yang, and Q. H. Gong, "The refocusing behaviour of a focused femtosecond laser pulse in fused silica," J. Opt. A, Pure Appl. Opt. 5, 102-107 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited