OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 11 — Nov. 1, 2006
  • pp: 2441–2447

Optical transmission and waveguiding by excitonic quantum dot lattices

Y. Fu, E. Berglind, L. Thylén, and H. Ågren  »View Author Affiliations


JOSA B, Vol. 23, Issue 11, pp. 2441-2447 (2006)
http://dx.doi.org/10.1364/JOSAB.23.002441


View Full Text Article

Enhanced HTML    Acrobat PDF (386 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Metal–dielectric–metal configurations of optical waveguides have a very high laterally packaging density at the cost of high optical loss. Photonic crystals based on refractive-index-modulation materials have been used in optics, e.g., two materials having different refractive indices form a well-defined Bragg refraction mirror. Such a waveguide has lower loss but also lower packaging density. From the outset of these two notions, we propose a photonic-crystal device based on the exciton-polariton effect in a three-dimensional array of semiconductor quantum dots (QDs) for ultradense optical planar circuit applications. Excitons are first photogenerated in the QDs by the incident electromagnetic field, the exciton–polariton effect in the QD photonic crystal then induces an extra optical dispersion in QDs. The high contrast ratio between the optical dispersions of the QDs and the background therefore creates clear photonic bandgaps. By carefully designing the QD size and the QD lattice structure, perfect electromagnetic field reflection can be obtained at a specific wavelength in the lossless case, thus providing the fundamental basis for ultradense optical waveguide applications.

© 2006 Optical Society of America

OCIS Codes
(130.5990) Integrated optics : Semiconductors
(160.4330) Materials : Nonlinear optical materials
(230.7370) Optical devices : Waveguides

ToC Category:
Photonic Crystals

History
Original Manuscript: April 24, 2006
Revised Manuscript: June 13, 2006
Manuscript Accepted: July 13, 2006

Citation
Y. Fu, E. Berglind, L. Thylén, and H. Ågren, "Optical transmission and waveguiding by excitonic quantum dot lattices," J. Opt. Soc. Am. B 23, 2441-2447 (2006)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-11-2441


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S.-Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, "Experimental demonstration of guiding and bendings of electromagnetic waves in a photonic crystal," Science 282, 274-276 (1998). [CrossRef] [PubMed]
  2. T. Zijlstra, E. van der Drift, M. J. A. de Dood, E. Snoeks, and A. Polman, "Fabrication of two-dimensional photonic crystal waveguides for 1.5 μm in silicon by deep anisotropic dry etching," J. Vac. Sci. Technol. B 17, 2734-2739 (1999). [CrossRef]
  3. M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu, and T. Yatsui, "Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields," IEEE J. Sel. Top. Quantum Electron. 8, 839-862 (2002). [CrossRef]
  4. A. R. McGurn and A. A. Maradudin, "Photonic band structures of two- and three-dimensional periodic metal or semiconductor arrays," Phys. Rev. B 48, 17576-17579 (1993). [CrossRef]
  5. W. Zhang, A. Hu, X. Lei, N. Xu, and N. Ming, "Photonic band structures of a two-dimensional ionic dielectric medium," Phys. Rev. B 54, 10280-10283 (1996). [CrossRef]
  6. L. I. Deych, D. Livdan, and A. A. Lisyansky, "Resonant tunneling of electromagnetic waves through polariton gaps," Phys. Rev. E 57, 7254-7258 (1998). [CrossRef]
  7. E. L. Ivchenko, Y. Fu, and M. Willander, "Exciton polaritons in quantum-dot photonic crystals," Phys. Solid State 42, 1756-1765 (2000). [CrossRef]
  8. A. Yu. Sivachenko, M. E. Raikh, and Z. V. Vardeny, "Excitations in photonic crystals infiltrated with polarizable media," Phys. Rev. A 64, 13809-13816 (2001). [CrossRef]
  9. K. C. Huang, P. Bienstman, J. D. Joannopoulos, K. A. Nelson, and S. Fan, "Field expulsion and reconfiguration in polaritonic photonic crystals," Phys. Rev. Lett. 90, 196402 (2003). [CrossRef] [PubMed]
  10. A. L. Yablonskii, E. A. Muljarov, N. A. Gippius, S. G. Tikhodeev, and T. Ishihara, "Optical properties of polaritonic crystal slab," Phys. Status Solidi A 190, 413-419 (2002). [CrossRef]
  11. M.D.Sturge and E.I.Rashba eds., Excitons (North-Holland, 1982).
  12. Y. Fu, M. Willander, E. L. Ivchenko, and A. A. Kiselev, "Four-wave mixing in microcavities with embedded quantum wells," Phys. Rev. B 55, 9872-9879 (1997). [CrossRef]
  13. Y. Fu, M. Willander, and E. L. Ivchenko, "Photonic dispersions of semiconductor-quantum-dot-array-based photonic crystals in primitive and face-centered cubic lattices," Superlattices Microstruct. 27, 255-264 (2000). [CrossRef]
  14. Y. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyanskii, V. N. Bogomolov, and A. V. Prokofiev, "Existence of a photonic pseudogap for visible light in synthetic opals," Phys. Rev. B 55, R13357-R13360 (1997). [CrossRef]
  15. E. L. Ivchenko, M. M. Voronov, M. V. Erementchouk, L. I. Deych, and A. A. Lisyansky, "Multiple-quantum-well-based photonic crystals with simple and compound elementary supercells," Phys. Rev. B 70, 195106 (2004). [CrossRef]
  16. Y. Zeng, X.-S. Chen, W. Lu, and Y. Fu, "Exciton polaritons of nano-spherical-particle photonic crystals in compound lattices," Eur. Phys. J. B 49, 313-318 (2006). [CrossRef]
  17. Y. A. Vlasov, S. Petit, G. Klein, B. Hönerlage, and Ch. Hirlimann, "Femtosecond measurements of the time of flight of photons in a three-dimensional photonic crystal," Phys. Rev. B 60, 1030-1035 (1999). [CrossRef]
  18. J. Ishi-Hayase and T. Ishihara, "Fundamental optical properties of photonic crystal slabs in the strong coupling regime," Semicond. Sci. Technol. 18, 411-418 (2003). [CrossRef]
  19. A. D. Bristow, J.-P. R. Wells, W. H. Fan, A. M. Fox, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, "Ultrafast nonlinear response of AlGaAs two-dimensional photonic crystal waveguides," Appl. Phys. Lett. 83, 851-853 (2003). [CrossRef]
  20. A. D. Bristow, D. O. Kundys, A. Z. Garcia-Déniz, J.-P. R. Wells, A. M. Fox, M. S. Skolnick, D. M. Whittaker, A. Tahraoui, T. F. Krauss, and J. S. Roberts, "Ultrafast nonlinear tuning of the reflection properties of AlGaAs photonic crystal waveguides by two-photon absorption," J. Appl. Phys. 96, 4729-4734 (2004). [CrossRef]
  21. M. Shimizu and T. Ishihara, "Subpicosecond transmission change in semiconductor-embedded photonic crystal slab: toward ultrafast optical switching," Appl. Phys. Lett. 80, 2836-2838 (2002). [CrossRef]
  22. T. Ishihara, "Optical response of semiconductor and metal-embedded photonic crystal slabs," Phys. Status Solidi A 201, 398-404 (2004). [CrossRef]
  23. J. O. Dimmock, "Introduction to the theory of exciton states in semiconductors," in Semiconductors and Semimetals (Academic, 1967), Vol. 3, Chap. 7, pp. 259-319. [CrossRef]
  24. H. Haken, Quantum Field Theory of Solids An Introduction (North-Holland, 1983), pp. 137-140.
  25. Y. Fu, T.-T. Han, Y. Luo, and H. Ågren, "Multiphoton excitation of quantum dots by ultra-short and ultra-intense laser pulse," Appl. Phys. Lett. 88, 221114 (2006). [CrossRef]
  26. E. L. Ivchenko and A. V. Kavokin, "Reflection of light from structures with quantum wells, quantum wires and quantum dots," Fiz. Tverd. Tela (Leningrad) 34, 1815-1822 (1992); [E. L. Ivchenko and A. V. Kavokin,Sov. Phys. Solid State 34, 968-971 (1992)].
  27. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, "Band parameters for III-V compound semiconductors and their alloys," J. Appl. Phys. 89, 5815-5875 (2001). [CrossRef]
  28. P. Borri, S. Schneider, W. Langbein, U. Woggon, A. E. Zhukov, V. M. Ustinov, N. N. Ledentsov, Zh. I. Alferov, D. Ouyang, and D. Bimberg, "Ultrafast carrier dynamics and dephasing in InAs quantum-dot amplifiers emitting near 1.3-μm-wavelength at room temperature," Appl. Phys. Lett. 79, 2633-2635 (2001). [CrossRef]
  29. H. H. Nilsson, J.-Z. Zhang, and I. Galbraith, "Homogeneous broadening in quantum dots due to Auger scattering with wetting layer carriers," Phys. Rev. B 72, 205331 (2005). [CrossRef]
  30. E. L. Ivchenko, "Excitonic polaritons in periodic quantum-well structures," Sov. Phys. Solid State 33, 1344-1346 (1991).
  31. J. M. Vazquez, J.-Z. Zhang, and I. Galbraith, "Quantum dot versus quantum well semiconductor optical amplifiers for subpicosecond pulse amplification," Opt. Quantum Electron. 36, 539-549 (2004). [CrossRef]
  32. A. Taflove and S. C. Hagness, "Introduction to Maxwell's equations and the Yee algorithm," Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000), Chap. 3, pp. 67-107.
  33. O.Madelung, ed., Semiconductors Group IV Elements and III-V Compounds (Springer-Verlag, 1991), p. 109.
  34. L. Thylén and E. Berglind, "Nanophotonics and negative epsilon materials," J. Zhejiang Univ., Sci. 7, 41-44 (2006). [CrossRef]
  35. L. Thylén and E. Berglind, "Integrated photonic nanometer-sized waveguides based on metals, a feasibility investigation" (submitted to IEEE J. Quantum Electron.).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited