OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 12 — Dec. 1, 2006
  • pp: 2541–2550

Asymptotically exact parabolic solutions of the generalized nonlinear Schrödinger equation with varying parameters

Vladimir I. Kruglov and John D. Harvey  »View Author Affiliations


JOSA B, Vol. 23, Issue 12, pp. 2541-2550 (2006)
http://dx.doi.org/10.1364/JOSAB.23.002541


View Full Text Article

Enhanced HTML    Acrobat PDF (236 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present exact asymptotic similariton solutions of the generalized nonlinear Schrödinger equation (NLSE) with gain or loss terms for a normal-dispersion fiber amplifier with dispersion, nonlinearity, and gain profiles that depend on the propagation distance. Our treatment is based on the mapping of the NLSE with varying parameters to the NLSE with constant dispersion and nonlinearity coefficients and an arbitrary varying gain function. We formulate an effective procedure that leads directly, under appropriate conditions, to a wide range of exact asymptotic similariton solutions of NLSE demonstrating self-similar propagating regimes with linear chirp.

© 2006 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Nonlinear Optics

History
Original Manuscript: March 17, 2006
Revised Manuscript: July 20, 2006
Manuscript Accepted: August 6, 2006

Citation
Vladimir I. Kruglov and John D. Harvey, "Asymptotically exact parabolic solutions of the generalized nonlinear Schrödinger equation with varying parameters," J. Opt. Soc. Am. B 23, 2541-2550 (2006)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-12-2541


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. L. Quiroga-Taixeiro, 'Wave-breaking-free pulses in nonlinear optical fibers,' J. Opt. Soc. Am. B 10, 1185-1190 (1993). [CrossRef]
  2. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, 'Self-similar propagation and amplification of parabolic pulses in optical fibers,' Phys. Rev. Lett. 84, 6010-6013 (2000). [CrossRef] [PubMed]
  3. V. I. Kruglov, A. C. Peacock, J. D. Harvey, and J. M. Dudley, 'Self-similar propagation of parabolic pulses in normal dispersion fiber amplifiers,' J. Opt. Soc. Am. B 19, 461-469 (2002). [CrossRef]
  4. V. I. Kruglov, A. C. Peacock, J. M. Dudley, and J. D. Harvey, 'Self-similar propagation of high-power parabolic pulses in optical fiber amplifiers,' Opt. Lett. 25, 1753-1755 (2000). [CrossRef]
  5. K. Tamura and M. Nakazawa, 'Pulse compression by nonlinear pulse evolution with reduced optical wave breaking in erbium-doped fiber amplifiers,'Opt. Lett. 21, 68-70 (1996). [CrossRef] [PubMed]
  6. C. Finot, G. Millot, C. Billet, and J. M. Dudley, 'Experimental generation of parabolic pulses via Raman amplification in optical fiber,' Opt. Express 11, 1547-1552 (2003). [CrossRef] [PubMed]
  7. C. Finot, S. Pitois, G. Millot, C. Billet, and J. M. Dudley, 'Numerical and experimental study of parabolic pulses generated via Raman scattering and gain bandwith,' IEEE J. Sel. Top. Quantum Electron. 10, 1211-1218 (2004). [CrossRef]
  8. C. Finot, G. Millot, and J. M. Dudley, 'Asymptotic characteristics of parabolic similariton pulses in optical fiber amplifiers,' Opt. Lett. 29, 2533-2535 (2004). [CrossRef] [PubMed]
  9. C. Billet, John Dudley, N. Joly, and J. Knight, 'Intermediate asymptotic evolution and photonic bandgap fiber compression of optical similaritons around 1550nm,' Opt. Express 13, 3236-3241 (2005). [CrossRef] [PubMed]
  10. C. Finot, F. Parmigiani, P. Petropoulos, and D. Richardson, 'Parabolic pulse evolution in normally dispersive fiber amplifiers preceding the similariton formation regime,' Opt. Express 14, 3161-3170 (2006). [CrossRef] [PubMed]
  11. V. I. Kruglov, A. C. Peacock, and J. D. Harvey, 'Exact solutions of generalized nonlinear Schrödinger equation with distributed coefficients,' Phys. Rev. E 71, 056619 (2005). [CrossRef]
  12. D. Méchin, S. H. Im, V. Kruglov, and J. Harvey, 'Experimental demonstration of similariton pulse compression in a comblike dispersion-decreasing fiber amplifier,' Opt. Lett. 31, 2106-2108 (2006). [CrossRef] [PubMed]
  13. J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H. J. Fuchs, E. B. Kley, H. Zellmer, and A. Tünnermann, 'High power femtosecond Yb-doped fiber amplifier,' Opt. Express 10, 628-638 (2002). [PubMed]
  14. A. Malinowski, A. Piper, J. H. Price, K. Furusawa, Y. Jeong, J. Nilsson, and D. J. Richardson, 'Ultrashort-pulse Yb3+-fiber-based laser and amplifier system producing >25W average power,' Opt. Lett. 29, 2073-2075 (2004). [CrossRef] [PubMed]
  15. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, 'Self-similar evolution of parabolic pulses in a laser,' Phys. Rev. Lett. 92, 213902 (2004). [CrossRef] [PubMed]
  16. E. M. Dianov, P. V. Mamyshev, A. M. Prokhorov, and S. V. Chernikov, 'Generation of a train of fundamental solitons at a high repetition rate in optical fibers,' Opt. Lett. 14, 1008-1010 (1989). [CrossRef] [PubMed]
  17. T. Hirooka and M. Nakazawa, 'Parabolic pulse generation by use of a dispersion-decreasing fiber with normal group-velocity dispersion,' Opt. Lett. 29, 498-500 (2004). [CrossRef] [PubMed]
  18. V. I. Kruglov, D. Méchin, and J. D. Harvey, 'Self-similar solutions of the generalized Schrödinger equation with distributed coefficients,' Opt. Express 12, 6198-6207 (2004). [CrossRef] [PubMed]
  19. V. I. Kruglov, M. K. Olsen, and M. J. Collett, 'Quantum and thermal fluctuations of trapped Bose-Einstein condensates,' Phys. Rev. A 72, 033604 (2005). [CrossRef]
  20. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 1995).
  21. R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations (Academic, 1988).
  22. J. D. Moores, 'Nonlinear compression of chirped solitary waves with and without phase modulation,' Opt. Lett. 21, 555-557 (1996). [CrossRef] [PubMed]
  23. V. N. Serkin and A. Hasegava, 'Novel soliton solutions of the nonlinear Schrödinger equation model,' Phys. Rev. Lett. 85, 4502-4505 (2000). [CrossRef] [PubMed]
  24. V. N. Serkin and A. Hasegava, 'Exactly integrable nonlinear Schrödinger equation models with varying dispersion, nonlinearity and gain: application for soliton dispersion,' IEEE J. Sel. Top. Quantum Electron. 8, 418-431 (2002). [CrossRef]
  25. V. I. Kruglov, A. C. Peacock, and J. D. Harvey, 'Exact self-similar solutions of the generalized nonlinear Schrödinger equation with distributed coefficients,' Phys. Rev. Lett. 90, 113902 (2003). [CrossRef] [PubMed]
  26. D. K. Arrowsmith and C. M. Place, Dynamical Systems: Differential Equations, Maps and Chaotic Behavior (Chapman & Hall, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited