OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 12 — Dec. 1, 2006
  • pp: 2551–2558

Large-amplitude nematicon propagation in a liquid crystal with local response

Cathy García Reimbert, Antonmaria A. Minzoni, Noel F. Smyth, and Annette L. Worthy  »View Author Affiliations

JOSA B, Vol. 23, Issue 12, pp. 2551-2558 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (256 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The evolution of polarized light in a nematic liquid crystal whose directors have a local response to reorientation by the light is analyzed for arbitrary input light power. Approximate equations describing this evolution are derived based on a suitable trial function in a Lagrangian formulation of the basic equations governing the electric fields involved. It is shown that the nonlinearity of the material response is responsible for the formation of solitons, so-called nematicons, by saturating the nonlinearity of the governing nonlinear Schrödinger equation. Therefore in the local material response limit, solitons are formed due to the nonlinear saturation behavior. It is finally shown that the solutions of the derived approximate equations for nematicon evolution are in excellent agreement with numerical solutions of the full nematicon equations in the local regime.

© 2006 Optical Society of America

OCIS Codes
(160.3710) Materials : Liquid crystals
(190.4400) Nonlinear optics : Nonlinear optics, materials
(190.5330) Nonlinear optics : Photorefractive optics
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(190.5940) Nonlinear optics : Self-action effects

ToC Category:
Nonlinear Optics

Original Manuscript: June 15, 2006
Revised Manuscript: August 24, 2006
Manuscript Accepted: September 1, 2006

Cathy García Reimbert, Antonmaria A. Minzoni, Noel F. Smyth, and Annette L. Worthy, "Large-amplitude nematicon propagation in a liquid crystal with local response," J. Opt. Soc. Am. B 23, 2551-2558 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, 1995).
  2. J. A. Reyes and P. Palffy-Muhoray, 'Nonlinear Schrödinger equation in nematic liquid crystals,' Phys. Rev. E 58, 5855-5859 (1998). [CrossRef]
  3. H. Sarkissian, C. Tsai, B. Zeldovich, and N. Tabirian, 'Beam clean up and combining using orientational stimulated scattering in liquid crystals,' 2005 Conference on Lasers and Electro-Optics: Applications of LY3 Nonlinearities (Optical Society of America, 2005), pp. 505-507.
  4. C. Conti, M. Peccianti, and G. Assanto, 'Route to nonlocality and observation of accessible solitons,' Phys. Rev. Lett. 91, 073901 (2003). [CrossRef] [PubMed]
  5. C. García Reimbert, A. A. Minzoni, and N. F. Smyth, 'Spatial soliton evolution in nematic liquid crystals in the nonlinear local regime,' J. Opt. Soc. Am. B 23, 294-301 (2006). [CrossRef]
  6. G. Assanto, M. Peccianti, K. A. Brzdakiewicz, A. de Luca, and C. Umeton, 'Nonlinear wave propagation and spatial solitons in nematic liquid crystals,' J. Nonlinear Opt. Phys. Mater. 12, 123-134 (2003). [CrossRef]
  7. G. Assanto and M. Peccianti, 'Spatial solitons in nematic liquid crystals,' IEEE J. Quantum Electron. 39, 13-21 (2003). [CrossRef]
  8. W. L. Kath and N. F. Smyth, 'Soliton evolution and radiation loss for the nonlinear Schrödinger equation,' Phys. Rev. E 51, 1484-1492 (1995). [CrossRef]
  9. G. B. Whitham, Linear and Nonlinear Waves (Wiley, 1974).
  10. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables (Dover, 1972).
  11. D. J. Kaup and A. C. Newell, 'Solitons as particles, oscillators, and in slowly changing media: a singular perturbation theory,' Proc. R. Soc. London, Ser. A 361, 413-446 (1978). [CrossRef]
  12. J. Yang, 'Vector solitons and their internal oscillations in birefringent nonlinear optical fibers,' Stud. Appl. Math. 98, 61-97 (1997). [CrossRef]
  13. B. Fornberg and G. B. Whitham, 'A numerical and theoretical study of certain nonlinear wave phenomena,' Philos. Trans. R. Soc. London, Ser. A 289, 373-403 (1978). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited