OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 12 — Dec. 1, 2006
  • pp: 2588–2596

Optical properties of thulium-doped chalcogenide glasses and the uncertainty of the calculated radiative lifetimes using the Judd–Ofelt approach

V. G. Truong, A. M. Jurdyc, B. Jacquier, B. S. Ham, A. Q. Le Quang, J. Leperson, V. Nazabal, and J. L. Adam  »View Author Affiliations


JOSA B, Vol. 23, Issue 12, pp. 2588-2596 (2006)
http://dx.doi.org/10.1364/JOSAB.23.002588


View Full Text Article

Enhanced HTML    Acrobat PDF (195 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A brief description of the basic spectroscopic properties of Tm 3 + -doped 20Ge-5Ga-10Sb-65S (GeGaSbS) glass is presented. Spontaneous-emission probabilities, radiative lifetimes, branching ratios, and quantum efficiency of Tm 3 + in GeGaSbS glass are evaluated by use of Judd–Ofelt theory. Lifetime measurements are carried out at room and low temperatures. A large difference of the lifetime values occurs between the theoretical and experimental results. McCumber and Ladenburg–Funchtbauer techniques are used for the emission cross-section determinations. Discrepancies appear between these two techniques. Hypotheses about the presence of the diffusion-limited relaxation process are applied for explanations.

© 2006 Optical Society of America

OCIS Codes
(160.2750) Materials : Glass and other amorphous materials
(300.2140) Spectroscopy : Emission
(300.6360) Spectroscopy : Spectroscopy, laser

ToC Category:
Spectroscopy

History
Original Manuscript: January 17, 2006
Revised Manuscript: June 14, 2006
Manuscript Accepted: July 27, 2006

Citation
V. G. Truong, A. M. Jurdyc, B. Jacquier, B. S. Ham, A. Q. Le Quang, J. Leperson, V. Nazabal, and J. L. Adam, "Optical properties of thulium-doped chalcogenide glasses and the uncertainty of the calculated radiative lifetimes using the Judd-Ofelt approach," J. Opt. Soc. Am. B 23, 2588-2596 (2006)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-12-2588


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Sakaguchi and S. Todoroki, 'Transmission of silica glass,' in Glass and Rare Earth-Doped Glasses for Optical Fibres, D.W.Hewak, ed. (INSPEC, 1997), Chap. 1, p. 3.
  2. M. Poulain, M. Poulain, J. Lucas, and P. Brun, 'Verres fluorés au tetrafluorure de zirconium; propriétés optiques d'un verre dopé au Nd3+,' Mater. Res. Bull. 10, 43 (1975). [CrossRef]
  3. R. Reisfeld, 'Chalcogenide glasses doped by rare earths-structure and optical properties,' Ann. Chim. (Paris) 7, 147-160 (1982).
  4. K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel, 'Spectroscopy of Dy3+ in Ge-Ga-S glass and its suitability for 1.3-μm fiber-optical amplifier applications,' Opt. Lett. 19, 904-906 (1994). [CrossRef] [PubMed]
  5. J. A. M. Neto, E. Taylor, B. N. Samson, J. Wang, D. W. Hewak, R. I. Laming, D. N. Payne, E. Tarbox, P. D. Maton, G. M. Roba, B. E. Kinsman, and R. Hanney, 'The application of Ga:La:S based glass for optical amplification at 1.3 microns,' J. Comp. Neurol. 184, 292-296 (1995).
  6. Y. Ohishi, A. Mori, T. Kanamori, K. Fujiura, and S. Sudo, 'Fabrication of praseodymium-doped arsenic sulphide chalcogenide fiber for 1.3 μm fiber amplifier,' Appl. Phys. Lett. 65, 13-15 (1994). [CrossRef]
  7. R. Reisfeld, 'Chalcogenide glasses doped by rare earths--structure and optical properties,' Ann. Chim. (Paris) 7, 147-160 (1982).
  8. L. Bigot, A.-M. Jurdyc, B. Jacquier, and J.-L. Adam, 'Inhomogeneous and homogeneous linewidths in Er3+-doped chalcogenide glasses,' Opt. Mater. 24, 97-102 (2003). [CrossRef]
  9. J. Wenzel, K. Wei, D. P. Machewirth, J. Wenzel, E. Snitzer, and G. H. Sigel, Jr., 'Pr3+-doped Ge-Ga-S glasses for 1.3 μm optical fiber amplifiers,' J. Comp. Neurol. 182, 257-261 (1995).
  10. Y. Ohishi, T. Kanamori, T. Kitagawa, S. Takahashi, E. Snitzer, and G. H. Siegel, 'Pr3+-doped fluoride fiber amplifier operating at 1.3 μm,' in Optical Fiber and Communication Conference, Vol. 4 of 1991 OSA Technical Digest Series (Optical Society of America, 1991), paper PD2.
  11. Y. Guimond, J. L. Adam, A. M. Jurdyc, H. L. Ma, J. Mugnier, and B. Jacquier, 'Optical properties of antimony-stabilised sulphide glasses doped with Dy3+ and Er3+ ions,' J. Comp. Neurol. 256-257, 378-382 (1999).
  12. T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, '1.47 μm band Tm3+ doped fluoride fibre amplifier using a 1.064 μm up-conversion pumping scheme,' Electron. Lett. 29, 110-112 (1993). [CrossRef]
  13. F. Roy, A. LeSauze, P. Baniel, and D. Bayart, '0.8 μm+1.4 μm pumping for gain-shifted TDFA with power conversion efficiency exceeding 50%,' in Optical Amplifiers and Their Applications, Vol. 60 of OSA Trends in Optics and Photonics Series, N.E.Jolley, J.D.Minelly, and Y.Nakano, eds. (Optical Society of America, 2001), paper PD4-1-PD4-3.
  14. A. M. Jurdyc, G. Rault, W. Meffre, J. Le Person, S. Guy, F. Smektala, and J. L. Adam, 'Optical properties of Tm3+ ions in GeGaSbS glasses,' Proc. SPIE 4645, 79-84 (2002). [CrossRef]
  15. B. R. Judd, 'Optical absorption intensities of rare-earth ions,' Phys. Rev. 127, 750-761 (1962). [CrossRef]
  16. G. S. Ofelt, 'Intensities of crystal spectra of rare-earth Ions,' J. Chem. Phys. 37, 511-520 (1962). [CrossRef]
  17. N. Spector, R. Reisfeld, and L. Boehm, 'Eigenstates and radiative transition probabilities for Tm3+(4f12) in phosphate and tellurite glasses,' Chem. Phys. Lett. 49, 49-53 (1977). [CrossRef]
  18. J. L. Doualan, S. Girard, H. Haquin, J. L. Adam, and J. Montagne, 'Spectroscopic properties and laser emission of Tm doped ZBLAN glass at 1.8 μm,' Opt. Mater. 24, 563-574 (2003). [CrossRef]
  19. D. E. McCumber, 'Einstein relations connecting broadband emission and absorption spectra,' Phys. Rev. 136, A954 (1964). [CrossRef]
  20. M. J. Weber, T. E. Varitimos, and B. H. Matsinger, 'Optical intensities of rare-earth ions in yttrium orthoaluminate,' Phys. Rev. B 8, 47-53 (1973). [CrossRef]
  21. H. Onodera, I. Awai, and J. Ikenoue, 'Refractive-index measurement of bulk materials: prism coupling method,' Appl. Opt. 22, 1194-1197 (1983). [CrossRef] [PubMed]
  22. A. M. Jurdyc, V. G. Truong, B. Jacquier, V. Nazabal, J. Leperson, and J. L. Adam, 'Sulphide glasses for optical amplifiers,' in Proceedings of the International Workshop on Photonics and Applications: Advances in Photonics and Applications (IWPA, 2004), pp. 201-208.
  23. J. L. Adam, Y. Guimond, A. M. Jurdyc, L. Griscom, J. Mugnier, and B. Jacquier, 'Optical properties of stabilized Dy3+-doped sulfide glasses for 1.3-μm amplification,' Proc. SPIE 3280, 31-39 (1998). [CrossRef]
  24. B. B. Harbison, C. I. Merzbacher, and I. D. Aggarwal, 'Preparation and properties of BaS-Ga2S3-GeS2 glasses,' J. Comp. Neurol. 213-214, 16-21 (1997).
  25. K. Abe, H. Takebe, and K. Morigana, 'Preparation and properties of Ge-Ga-S glasses for laser hosts,' J. Comp. Neurol. 212, 143-150 (1997).
  26. D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, 'Energy transfer between Er3+ and Tm3+ ions in a barium fluoride-thorium fluoride glass,' Phys. Rev. B 39, 80-90 (1989). [CrossRef]
  27. F. Cornacchia, L. Palatella, A. Toncelli, M. Tonelli, A. Baraldi, R. Capelletti, E. Cavalli, K. Shimamura, and T. Fukuda, 'Temperature dependence of impurity quenched luminescence in Tm3+:LiLuF4,' J. Phys. Chem. Solids 63, 197-202 (2002). [CrossRef]
  28. M. J. Weber, 'Luminescence decay by energy migration and transfer: observation of diffusion-limited relaxation,' Phys. Rev. B 4, 2932-2939 (1971), and references therein. [CrossRef]
  29. J. P. Van der Ziel, L. Korf, and L. G. van Uitert, 'Quenching of Tb3+ luminescence by direct transfer and migration in aluminum garnets,' Phys. Rev. B 6, 615-623 (1972). [CrossRef]
  30. M. Naftaly, A. Jha, and W. G. Jordan, '1.3 μm fluorescence quenching in Pr-doped glasses,' J. Appl. Phys. 84, 1800-1804 (1998). [CrossRef]
  31. D. R. Simson, A. J. Faber, and H. de Waal, 'GeSx glass for Pr3+-doped fiber amplifiers at 1.3 μm,' J. Non-Cryst. Solids 185, 283-288 (1995). [CrossRef]
  32. M. Scheffler, J. Kirchhof, J. Kobelke, K. Schuster, and A. Schwuchow, 'Increased rare earth solubility in As-S glasses,' J. Non-Cryst. Solids 256-257, 59-62 (1999). [CrossRef]
  33. W. J. Miniscalco and R. S. Quimby, 'General procedure for the analysis of Er3+ cross section,' Opt. Lett. 16, 258-260 (1991). [CrossRef] [PubMed]
  34. V. G. Truong, 'Thulium spectroscopy in sulphide glasses for optical amplifier application,' doctoral thesis (Université Claude Bernard Lyon I, 2004).
  35. T. Schweizer, F. Goutaland, E. Martins, D. W. Hewak, and W. S. Brocklesby, 'Site-selective spectroscopy in dysprosium-doped chalcogenide glasses for 1.3-μm optical-fiber amplifiers,' J. Opt. Soc. Am. B 18, 1436-1442 (2001). [CrossRef]
  36. R. S. Quimby and B. G. Aitken, 'Multiphonon energy gap law in rare-earth doped chalcogenide glass,' J. Non-Cryst. Solids 320, 100-112 (2003). [CrossRef]
  37. T. Schweizer, P. E.-A. Möbert, J. R. Hector, D. W. Hewak, W. S. Brocklesby, D. N. Payne, and G. Huber, 'Optical measurement of narrow band rare-earth 4f levels with energies greater than the band gap of the host,' Phys. Rev. Lett. 80, 1537-1540 (1998). [CrossRef]
  38. S. M. Lima, A. S. S. de Camargo, L. A. O. Nunes, T. Catunda, and D. W. Hewak, 'Fluorescence quantum efficiency measurements of excitation and non-radiative de-excitation processes of rare earth 4f states in chalcogenide glasses,' Appl. Phys. Lett. 81, 589-591 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited