OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 2 — Feb. 1, 2006
  • pp: 257–264

Theory and simulation of dual-frequency mode-locked lasers

Edward D. Farnum, Leslie Butson, and J. Nathan Kutz  »View Author Affiliations


JOSA B, Vol. 23, Issue 2, pp. 257-264 (2006)
http://dx.doi.org/10.1364/JOSAB.23.000257


View Full Text Article

Enhanced HTML    Acrobat PDF (943 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new model is constructed that describes the operation of dual-frequency, pulsed mode-locked laser cavities. The model, which is a combination of dual-channel interactions in the canonical master mode-locking model subject to three different gain models that account for both self- and cross-saturation effects, results in mode-locking dynamics that qualitatively describe the observed experimental dual-frequency laser operation. Specifically, the combination of self- and cross saturation in the gain allows for mode locking at two frequencies simultaneously, which can be of significantly different energies and pulsewidths. The model gives a framework for understanding the operation and stability of the increasingly important and timely technology of dual- and multifrequency mode-locked laser cavities.

© 2006 Optical Society of America

OCIS Codes
(060.4230) Fiber optics and optical communications : Multiplexing
(140.4050) Lasers and laser optics : Mode-locked lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 7, 2005
Revised Manuscript: July 14, 2005
Manuscript Accepted: September 7, 2005

Citation
Edward D. Farnum, Leslie Butson, and J. Nathan Kutz, "Theory and simulation of dual-frequency mode-locked lasers," J. Opt. Soc. Am. B 23, 257-264 (2006)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-2-257


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley-Interscience, 2002). [CrossRef]
  2. Y. Shiquan, L. Zhaohui, Y. Shuzhong, D. Xiaoyyi, K. Guiyun, and Z. Qida, "Dual-wavelength actively mode-locked erbium dobed fiber laser using FBGs," in Advances in Fiber Lasers, L.N.Duprasula, ed., Proc. SPIE 4974, 43-49 (2003).
  3. H. Dong, G. Zhu, Q. Wang, and N. K. Dutta, "Simultaneous mode locked operation of a fiber laser at two wavelengths," in Physics and Simulation of Optoelectronic Devices XII, M.Osinski, H.Amano, and F.Henneberger, eds., Proc. SPIE 5349, 117-121 (2004).
  4. Z. Ahned and N. Onodera, "High repetition rate optical pulse generation by frequency multiplication in actively mode-locked fiber ring lasers," Electron. Lett. 32, 455-455 (1996). [CrossRef]
  5. C. Wu and N. K. Dutta, "High repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser," IEEE J. Quantum Electron. 36, 145-150 (2000). [CrossRef]
  6. Z. Li, C. Lou, Y. Gao, and K. T. Chan, "A dual-wavelength and dual-repetition-rate actively mode-locked fiber ring laser," Opt. Commun. 185, 381-385 (2000). [CrossRef]
  7. H. A. Haus, "Mode-locking of lasers," IEEE J. Sel. Areas Commun. 6, 1173-1185 (2000).
  8. D. J. Richardson, R. I. Laming, D. N. Payne, V. J. Matsas, and M. W. Phillips, "Self-starting, passively modelocked erbium fiber laser based on the amplifying Sagnac switch," Electron. Lett. 27, 542-544 (1991). [CrossRef]
  9. M. L. Dennis and I. N. Duling III, High repetition rate figure eight laser with extracavity feedback," Electron. Lett. 28, 1894-1896 (1992). [CrossRef]
  10. F. X. Kartner and U. Keller, "Stabilization of solitonlike pulses with a slow saturable absorber," Opt. Lett. 20, 16-18 (1995). [CrossRef] [PubMed]
  11. J. N. Kutz, B. C. Collings, K. Bergman, andS. Tsuda, S. Cundiff, W., H. Knox, P. Holmes, and M. Weinstein, "Mode-locking pulse dynamics in a fiber laser with a saturable Bragg reflector," J. Opt. Soc. Am. B 14, 2681-2690 (1997). [CrossRef]
  12. K. Tamura, H. A. Haus, and E. P. Ippen, "Self-starting additive pulse modelocked erbium fiber ring laser," Electron. Lett. 28, 2226-2228 (1992). [CrossRef]
  13. H. A. Haus, E. P. Ippen, and K. Tamura, "Additive-pulse modelocking in fiber lasers," IEEE J. Quantum Electron. 30, 200-208 (1994). [CrossRef]
  14. M. E. Fermann, M. J. Andrejco, Y. Silverberg, and M. L. Stock, "Passive modelocking by using nonlinear polarization evolution," Opt. Lett. 29, 447-449 (1993).
  15. F. X. KartnerD. Kopf, and U. Keller, "Solitary pulse stabilization and shortening in actively mode-locked lasers," J. Opt. Soc. Am. B 12, 486-4966 (1995). [CrossRef]
  16. H. A. Haus , "A theory of forced mode locking," IEEE J. Quantum Electron. 11, 323-1330 (1975). [CrossRef]
  17. J. M. Soto-Crespo and N. Akhmediev, "Composite solitons and two-pulse generation in passively mode-locked lasers modeled by the complex quintic Swift-Hohenberg equations," Phys. Rev. E 66, 066610 (1992). [CrossRef]
  18. N. Akhmediev, A. S. Rodrigues, and G. E. Town, "Interaction of dual-frequency pulses in passively mode-locked lasers," Opt. Commun. 187, 419-426 (2001). [CrossRef]
  19. T. Kapitula, J. N. Kutz, and B. Sandstede"Stability of pulses in the master modelocking equation," J. Opt. Soc. Am. B 19, 740-746 (2002). [CrossRef]
  20. T. Kapitula, J. N. Kutz, and B. Sandstede, "The Evans function for nonlocal equations," 53, 1095-1126 (2004).
  21. T. Kapitula, "Stability criterion for bright solitary waves of the perturbed cubic-quintic Schrödinger equation," Physica D 116, 95-120 (1998). [CrossRef]
  22. M. Romagnoli, S. Wabnitz, P. Franco, M. Midrio, L. Bossalini, and F. Fontana, "Role of dispersion in pulse emission from a sliding-frequency fiber laser," J. Opt. Soc. Am. B 12, 938-944 (1995). [CrossRef]
  23. N. Akhmediev, J. M. Soto-Crespo, and G. Town, "Pulsating solitons, chaotic solitons, period doubling and pulse coexistence in mode-locking lasers: complex Ginzburg-Landau equation approach," Phys. Rev. E 28, 055602 (2001).
  24. P. Drazin, Nonlinear Systems (Cambridge, New York, 1992).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited