OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 3 — Mar. 1, 2006
  • pp: 468–478

Enhanced near-field resolution in midinfrared using metamaterials

Dmitriy Korobkin, Yaroslav Urzhumov, and Gennady Shvets  »View Author Affiliations


JOSA B, Vol. 23, Issue 3, pp. 468-478 (2006)
http://dx.doi.org/10.1364/JOSAB.23.000468


View Full Text Article

Enhanced HTML    Acrobat PDF (926 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate that a negative-permittivity material (silicon carbide) sandwiched between two layers of positive-permittivity material (silicon oxide) can be used for enhancement of the resolution of near-field imaging via the superlensing effect. The resulting three-layer metamaterial is also shown to exhibit an enhanced transmission when its effective dielectric permittivity matches that of the vacuum. Experimental far-field diagnostics of the superlensing based on measuring transmission coefficients through the metal-coated superlens is implemented using Fourier-transformed infrared microscopy. Superlensing is shown to be a highly resonant phenomenon manifested in a narrow frequency range.

© 2006 Optical Society of America

OCIS Codes
(240.6690) Optics at surfaces : Surface waves
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Metamaterials

History
Original Manuscript: July 21, 2005
Manuscript Accepted: August 21, 2005

Virtual Issues
Vol. 1, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Dmitriy Korobkin, Yaroslav Urzhumov, and Gennady Shvets, "Enhanced near-field resolution in midinfrared using metamaterials," J. Opt. Soc. Am. B 23, 468-478 (2006)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-3-468


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. M. Shalaev, Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films, Springer Tracts in Modern Physics (Springer, 2000), Vol. 158.
  2. R. S. Benninnk, Y.-K. Yoon, R. W. Boyd, and J. E. Sipe, "Accessing the optical nonlinearity of metals with metal-dielectric photonic bandgap structures," Opt. Lett. 24, 1416-1418 (1999). [CrossRef]
  3. A. J. Ward, J. B. Pendry, and W. J. Stewart, "Photonic dispersion surfaces," J. Phys. Condens. Matter 7, 2217-2224 (1995). [CrossRef]
  4. M. J. Bloemer and M. Scalora, "Transmissive properties of Ag-MgF2 photonic band gaps," Appl. Phys. Lett. 72, 1676-1678 (1998). [CrossRef]
  5. L. Zhou, W. Wen, C. T. Chan, and P. Sheng, "Electromagnetic wave tunneling through negative permittivity media with high magnetic fields," Phys. Rev. Lett. 94, 243905 (2005). [CrossRef]
  6. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett. 84, 4184-4187 (2000). [CrossRef] [PubMed]
  7. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77-79 (2001). [CrossRef] [PubMed]
  8. C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, "Experimental verification and simulation of negative index of refraction using Snell's Law," Phys. Rev. Lett. 90, 107401 (2003). [CrossRef] [PubMed]
  9. A. A. Houck, J. B. Brock, and I. L. Chuang, "Experimental observations of a left-handed material that obeys Snell's Law," Phys. Rev. Lett. 90, 137401 (2003). [CrossRef] [PubMed]
  10. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett. 76, 4773-4776 (1996). [CrossRef] [PubMed]
  11. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech. 47, 2075-2084 (1999). [CrossRef]
  12. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  13. G. Shvets, "Photonic approach to making a material with a negative index of refraction," Phys. Rev. B 67, 035109 (2003). [CrossRef]
  14. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, "Plasmon modes and negative refraction in metal nanowire composites," Opt. Express 11, 735-745 (2003). [CrossRef] [PubMed]
  15. G. Shvets and Y. Urzhumov, "Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonances," Phys. Rev. Lett. 93, 243902 (2004). [CrossRef]
  16. D. O. S. Melville, R. J. Blaikie, and C. R. Wolf, "Submicron imaging with a planar silver lens," Appl. Phys. Lett. 84, 4403-4405 (2004). [CrossRef]
  17. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005). [CrossRef] [PubMed]
  18. R. W. Waynant, I. K. Ilev, and I. Gannot, "Mid-infrared laser applications in medicine and biology," Philos. Trans. R. Soc. London, Ser. A 359, 635-644 (2001). [CrossRef]
  19. F. CapassoR. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, "Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission," Int. J. Quantum Chem. 38, 511-532 (2002).
  20. X. Tang, K. G. Irvine, D. Zhang, and M. G. Spencer, "Linear electro-optic effect in cubic silicon carbide," Appl. Phys. Lett. 59, 1938-1940 (1991). [CrossRef]
  21. Z. Q. Li, G. M. Wang, K. J. Mikolaitis, D. Moses, A. J. Heeger, and D. N. Basov, "An infrared probe of tunable dielectrics in metal-oxide-semiconductor structures," Appl. Phys. Lett. 86, 223506-223508 (2005). [CrossRef]
  22. C. A. Zorman, A. J. Fleischman, A. S. Dewa, M. Mehregany, C. Jacob, and P. Pirouz, "Epitaxial growth of 3C-SiC films on 4 in. diam (100) silicon wafers by atmospheric pressure chemical vapor deposition," J. Appl. Phys. 78, 5136-5138 (1995). [CrossRef]
  23. D. R. SmithD. Schurig, M. Rosenbluth, S. Schultz, S. A. Ramakrishna, and J. B. Pendry, "Limitations on subdiffraction imaging with a negative refractive index slab," Appl. Phys. Lett. 82, 1506-1508 (2003). [CrossRef]
  24. R. Merlin, "Analytical solution of the almost-perfect-lens problem," Appl. Phys. Lett. 84, 1290-1292 (2004). [CrossRef]
  25. V. A. Podolskiy and E. E. Narimanov, "Near-sighted superlens," Opt. Lett. 30, 75-77 (2005). [CrossRef] [PubMed]
  26. C. Kittel, Introduction to Solid-State Physics, 8th Ed. (Wiley, 2005).
  27. J. T. Shen and P. M. Platzman, "Near-field imaging with negative dielectric constant lenses," Appl. Phys. Lett. 80, 3286-3288 (2002). [CrossRef]
  28. G. Shvets, "Applications of surface plasmon and phonon polaritons to developing left-handed materials and nanolithography," Proc. SPIE 5221, 124-132 (2003). [CrossRef]
  29. G. Shvets and Y. Urzhumov, "Polariton-enhanced near field lithography and imaging with infrared light," Mater. Res. Soc. Symp. Proc. 820, R1.2.1 (2004). [CrossRef]
  30. D. Korobkin, Y. Urzhumov, and G. Shvets, "Far-field detection of the superlensing effect in mid-infrared: theory and experiment," J. Mod. Opt. 52, 2351-2364 (2005). [CrossRef]
  31. FEMLAB Reference Manual 2003 Version 2.3, Comsol AB, Sweden.
  32. E.D.Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  33. D. E. Aspnes, "Local field effects and effective medium theory: a microscopic perspective," Am. J. Phys. 50, 704-709 (1982). [CrossRef]
  34. S. Rohmfeld, M. Hundhausen, L. Ley, C. A. Zorman, and M. Mehregany, "Quantitative evaluation of biaxial strain in epitaxial 3C-SiC layers on Si(100) substrates by Raman spectroscopy," J. Appl. Phys. 91, 1113-1117 (2002). [CrossRef]
  35. J R. Birch and F. J. J. Clarke, "Interreflection errors in Fourier transform spectroscopy: a preliminary appraisal," Anal. Chim. Acta 380, 369-378 (1999). [CrossRef]
  36. E. J. Singley, K. S. Burch, R. Kawakami, J. Stephens, D. D. Awschalom, and D. N. Basov, "Electronic structure and carrier dynamics of the ferromagnetic semiconductor Ga1−xMnxAs," Phys. Rev. B 69, 165204 (2003). [CrossRef]
  37. P.-O. Nilsson, "Determination of optical constants from intensity measurements at normal incidence," Appl. Opt. 7, 435-442 (1968). [CrossRef] [PubMed]
  38. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999.)
  39. W. G. Spitzer, D. Kleinman, and D. Walsh, "Infrared properties of hexagonal silicon carbide," Phys. Rev. 113, 127-132 (1959). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited