OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 4 — Apr. 1, 2006
  • pp: 628–636

Adiabatic breakdown in a fiber ring resonator

Eyal Buks  »View Author Affiliations


JOSA B, Vol. 23, Issue 4, pp. 628-636 (2006)
http://dx.doi.org/10.1364/JOSAB.23.000628


View Full Text Article

Enhanced HTML    Acrobat PDF (495 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

I consider a topological transition resulting in an abrupt change by π of the geometric (Berry’s) phase occurring in an optical modulator based on a fiber ring resonator. The topological transition, induced by modifying the birefringence along the ring, manifests itself in a narrow resonance in the transmission of the optical modulator. Contrary to the adiabatic case, the condition of critical coupling is not essential to obtain deep modulation of the transmission. Moreover, broadening of the resonance due to the finite linewidth of the optical input is also discussed.

© 2006 Optical Society of America

OCIS Codes
(060.4080) Fiber optics and optical communications : Modulation
(080.2740) Geometric optics : Geometric optical design
(350.1370) Other areas of optics : Berry's phase

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: August 11, 2005
Revised Manuscript: October 2, 2005
Manuscript Accepted: October 10, 2005

Citation
Eyal Buks, "Adiabatic breakdown in a fiber ring resonator," J. Opt. Soc. Am. B 23, 628-636 (2006)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-4-628


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron. Lett. 36, 321-322 (2000). [CrossRef]
  2. A. Yariv, "Critical coupling and its control in optical waveguide-ring resonator systems," IEEE Photon. Technol. Lett. 14, 483-485 (2002). [CrossRef]
  3. J. M. Choi, R. K. Lee, and A. Yariv, "Control of critical coupling in a ring resonator-fiber configuration: application to wavelength-selective switching, modulation, amplification, and oscillation," Opt. Lett. 26, 1236-1238 (2001). [CrossRef]
  4. V. M. Menon, W. Tong, and S. R. Forrest, "Control of quality factor and critical coupling in microring resonators through integration of a semiconductor optical amplifier," IEEE Photon. Technol. Lett. 16, 1343-1345 (2004). [CrossRef]
  5. Yu. A. Kravtsov and Yu. I. Orlov, Geometrical Optics of Inhomogeneous Media (Springer-Verlag, 1990). [CrossRef]
  6. S. Pancharatnam, "Generalized theory of interference, and its applications," Proc. Indian Acad. Sci. Sect. A 44, 247-262 (1956).
  7. J. N. Ross, "The rotation of the polarization in low birefringence monomode optical fibers due to geometric effects," Opt. Quantum Electron. 16, 455-461 (1984). [CrossRef]
  8. A. Tomita and R. Y. Chiao, "Observation of Berry's topological phase by use of an optical fiber," Phys. Rev. Lett. 57, 937-940 (1986). [CrossRef] [PubMed]
  9. F. D. M. Haldane, "Path dependence of the geometric rotation of polarization in optical fibers," Opt. Lett. 11, 730-732 (1986). [CrossRef] [PubMed]
  10. M. V. Berry, "Interpreting the anholonomy of coiled light," Nature 326, 277-278 (1987). [CrossRef]
  11. M. V. Berry, "The adiabatic phase and Pancharatnam's phase for polarized light," J. Mod. Opt. 34, 1401-1407 (1987). [CrossRef]
  12. N. J. Frigo, "A generalized geometrical representation of coupled mode theory," IEEE J. Quantum Electron. QE-22, 2131-2140 (1986). [CrossRef]
  13. M. Kugler and S. Shtrikman, "Berry's phase, locally inertial frames, and classical analogues," Phys. Rev. D 37, 934-937 (1988). [CrossRef]
  14. H. Jiao, S. R. Wilkinson, and R. Y. Chiao, "Two topological phases in optics by means of a nonplanar Mach-Zehnder interferometer," Phys. Rev. A 39, 3475-3486 (1989). [CrossRef] [PubMed]
  15. S. G. Lipson, "Berry's phase in optical interferometry: a simple derivation," Opt. Lett. 15, 154-155 (1990). [CrossRef] [PubMed]
  16. O. J. Kwon, H. T. Lee, S. B. Lee, and S. S. Choi, "Observation of a topological phase in a noncyclic case by use of a half-turn optical fiber," Opt. Lett. 16, 223-225 (1991). [CrossRef] [PubMed]
  17. L. H. Ryder, "The optical Berry phase and the Gauss-Bonnet theorem," Eur. J. Phys. 12, 15-18 (1991). [CrossRef]
  18. C. R. Menyuk and P. K. A. Wai, "Polarization evolution and dispersion in fibers with spatially varying birefringence," J. Opt. Soc. Am. B 11, 1288-1296 (1994). [CrossRef]
  19. C. S. Brown and A. E. Bak, "Unified formalism for polarization optics with application to polarimetry on a twisted optical fiber," Opt. Eng. (Bellingham) 34, 1625-1635 (1995). [CrossRef]
  20. E. M. Frins and W. Dultz, "Direct observation of Berry's topological phase by using an optical fiber ring interferometer," Opt. Commun. 136, 354-356 (1997). [CrossRef]
  21. F. Wassmann and A. Ankiewicz, "Berry's phase analysis of polarization rotation in helicoidal fibers," Appl. Opt. 37, 3902-3911 (1998). [CrossRef]
  22. P. Senthilkumaran, B. Culshaw, and G. Thursby, "Fiber-optic Sagnac interferometer for the observation of Berry's topological phase," J. Opt. Soc. Am. B 17, 1914-1919 (2000). [CrossRef]
  23. P. Senthilkumaran, G. Thursby, and B. Culshaw, "Fiber-optic tunable loop mirror using Berry's geometric phase," Opt. Lett. 25, 533-535 (2000). [CrossRef]
  24. M. V. Berry, "Quantal phase-factors accompanying adiabatic changes," Proc. R. Soc. London Ser. A 392, 45-57 (1984). [CrossRef]
  25. R. Bhandari, "SU(2) phase jumps and geometric phases," Phys. Lett. A 157, 221-225 (1991). [CrossRef]
  26. R. Bhandari, "Interferometry without beam-splitter--a sensitive technique for spinor phases," Phys. Lett. A 180, 21-24 (1993). [CrossRef]
  27. R. Bhandari, "Polarization of light and topological phases," Phys. Rep. 281, 2-64 (1997). [CrossRef]
  28. H. Schmitzer, S. Klein, and W. Dultz, "Nonlinearity of Pancharatnam's topological phase," Phys. Rev. Lett. 71, 1530-1533 (1993). [CrossRef] [PubMed]
  29. B. Hils, W. Dultz, and W. Martienssen, "Nonlinearity of Pancharatnam's geometric phase in polarizing interferometers," Phys. Rev. E 60, 2322-2329 (1999). [CrossRef]
  30. S. P. Tewari, V. S. Ashoka, and M. S. Ramana, "A 4-arm Sagnac interferometric switch," Opt. Commun. 120, 235-238 (1995). [CrossRef]
  31. Q. Li, L. F. Gong, Y. H. Gao, and Y. L. Chen, "Experimental observation of the nonlinearity of the Pancharatnam phase with a Michelson interferometer," Opt. Commun. 169, 17-22 (1999). [CrossRef]
  32. Y. Lyanda-Geller, "Topological transitions in Berry's phase interference effects," Phys. Rev. Lett. 71, 657-661 (1993). [CrossRef] [PubMed]
  33. K. P. Marzlin and B. C. Sanders, "Inconsistency in the application of the adiabatic theorem," Phys. Rev. Lett. 93, 160408 (2004). [CrossRef] [PubMed]
  34. E. Buks, "Upper bound imposed upon responsivity of optical modulators," arxiv.org/abs/quant-ph/0510119.
  35. A. Simon and R. Ulrich, "Evolution of polarization along a single-mode fiber," Appl. Phys. Lett. 31, 517-520 (1977). [CrossRef]
  36. R. Ulrich and A. Simon, "Polarization optics of twisted single-mode fibers," Appl. Opt. 18, 2241-2251 (1979). [CrossRef] [PubMed]
  37. C. H. Tang, "An orthogonal coordinate system for curved pipes (correspondence)," IEEE Trans. Microwave Theory Tech. MTT-18, 69 (1970). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited