OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 4 — Apr. 1, 2006
  • pp: 718–722

Backward four-wave mixing in a four-level medium with electromagnetically induced transparency

Hoonsoo Kang, Gessler Hernandez, Jiepeng Zhang, and Yifu Zhu  »View Author Affiliations

JOSA B, Vol. 23, Issue 4, pp. 718-722 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (333 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze backward four-wave mixing in a four-level system exhibiting electromagnetically induced transparency (EIT). We show that EIT suppression of the linear absorption leads to the resonantly enhanced four-wave mixing process and the conversion efficiency near 100% may be achieved in a dense four-level medium with negligible decoherence decay.

© 2006 Optical Society of America

OCIS Codes
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.1670) Quantum optics : Coherent optical effects
(270.4180) Quantum optics : Multiphoton processes

ToC Category:
Quantum Optics

Original Manuscript: August 15, 2005
Manuscript Accepted: October 11, 2005

Hoonsoo Kang, Gessler Hernandez, Jiepeng Zhang, and Yifu Zhu, "Backward four-wave mixing in a four-level medium with electromagnetically induced transparency," J. Opt. Soc. Am. B 23, 718-722 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1997). [CrossRef]
  2. S. E. Harris and L. V. Hau, "Nonlinear optics at low light levels," Phys. Rev. Lett. 82, 4611-4614 (1999). [CrossRef]
  3. M. M. D. Lukin and A. Imamoglu, "Controlling photons using electromagnetically induced transparency," Nature 413, 273-275 (2001). [CrossRef]
  4. M. Jain, H. Xia, G. Y. Yin, A. J. Merriam, and S. E. Harris, "Efficient nonlinear frequency conversion with maximal atomic coherence," Phys. Rev. Lett. 77, 4326-4329 (1996). [CrossRef] [PubMed]
  5. A. J. Merriam, S. J. Sharpe, M. Shverdin, D. Manuszak, G. Y. Yin, and S. E. Harris, "Efficient nonlinear frequency conversion in an all-resonant double-Lambda system," Phys. Rev. Lett. 84, 5308-5311 (2000). [CrossRef] [PubMed]
  6. K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, "Self-induced phase matching in parametric anti-Stokes stimulated Raman scattering," Phys. Rev. Lett. 79, 209-212 (1997). [CrossRef]
  7. M. D. Lukin, A. B. Matsko, M. Fleischhauer, and M. O. Scully, "Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence," Phys. Rev. Lett. 82, 1847-1850 (1999). [CrossRef]
  8. S. F. Yelin, V. A. Sautenkov, M. M. Kash, G. R. Weltch, and M. D. Lukin, "Nonlinear optics via double dark resonances," Phys. Rev. A 68, 063801 (2003). [CrossRef]
  9. B. S. Ham, M. S. Shahriar, and P. R. Hemmer, "Enhancement of four-wave mixing and line narrowing by use of quantum coherence in an optically dense double-Lambda solid," Opt. Lett. 24, 86-88 (1999). [CrossRef]
  10. Y. Li and M. Xiao, "Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms," Opt. Lett. 21, 1064-1066 (1996). [CrossRef] [PubMed]
  11. B. L. Lu, W. H. Burkett, and M. Xiao, "Nondegenerate four-wave mixing in a double-Lambda system under the influence of coherent population trapping," Opt. Lett. 23, 804-806 (1998). [CrossRef]
  12. W. Harshawardhan and G. S. Agarwal, "Enhancement of nonlinear-optical signals under coherent-population-trapping conditions," Phys. Rev. A 58, 598-604 (1998). [CrossRef]
  13. G. S. Agarwal and J. H. Eberly, "Continuous-probe solutions for self-similar pulses in four-level systems," Phys. Rev. A 61, 013404 (2000). [CrossRef]
  14. A. S. Zibrov, M. D. Lukin, and M. O. Scully, "Nondegenerate parametric self-oscillation via multiwave mixing in coherent atomic media," Phys. Rev. Lett. 83, 4049-4052 (1999). [CrossRef]
  15. A. S. Zibrov, M. D. Lukin, L. Hollberg, and M. O. Scully, "Efficient frequency up-conversion in resonant coherent media," Phys. Rev. A 65, 051801 (2002). [CrossRef]
  16. M. M. Fleischhauer and T. Richter, "Pulse matching and correlation of phase fluctuations in Lambda systems," Phys. Rev. A 51, 2430-2442 (1995). [CrossRef] [PubMed]
  17. T. Johnsson and M. Fleischhauer, "Quantum theory of resonantly enhanced four-wave mixing: mean-field and exact numerical solutions," Phys. Rev. A 66, 043808 (2002). [CrossRef]
  18. C. Dorman, I. Kucukkara, and J. P. Marangos, "Measurement of high conversion efficiency to 123.6-nm radiation in a four-wave-mixing scheme enhanced by electromagnetically induced transparency," Phys. Rev. A 61, 013802 (2000). [CrossRef]
  19. J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, "Role of electromagnetically induced transparency in resonant four-wave-mixing schemes," Phys. Rev. A 53, 543-561 (1996). [CrossRef] [PubMed]
  20. L. Deng and M. G. Payne, "Three-photon destructive interference in ultraslow-propagation-enhanced four-wave mixing," Phys. Rev. A 68, 051801(R) (2003). [CrossRef]
  21. M. G. Payne and L. Deng, "Consequences of induced transparency in a double-Lambda scheme: destructive interference in four-wave mixing," Phys. Rev. A 65, 063806 (2002). [CrossRef]
  22. M. G. Payne and L. Deng, "Quantum entanglement of Fock states with perfectly efficient ultraslow single-probe photon four-wave mixing," Phys. Rev. Lett. 91, 123602 (2003). [CrossRef] [PubMed]
  23. C. H. Keitel, "Exponential gain in resonant four-wave mixing via dressed inversions," Phys. Rev. A 57, 1412-1416 (1998). [CrossRef]
  24. A. K. Popov and A. S. Bayev, "Enhanced four-wave mixing via elimination of inhomogeneous broadening by coherent driving of quantum transitions with control fields," Phys. Rev. A 62, 025801 (2000). [CrossRef]
  25. H. Kang, G. Hernandez, and Y. Zhu, "Slow-light six-wave mixing at low light intensities," Phys. Rev. Lett. 93, 073601 (2004). [CrossRef] [PubMed]
  26. H. Kang, G. Hernandez, and Y. Zhu, "Resonant four-wave mixing with slow light," Phys. Rev. A 70, 061804(R) (2004). [CrossRef]
  27. Y. Wu and X. Yang, "Highly efficient four-wave mixing in double-Lambda system in ultraslow propagation regime," Phys. Rev. A 70, 053818 (2004). [CrossRef]
  28. H. Shpaisman, A. D. Wilson-Gordon, and H. Friedmann, "Efficient parametric amplification in double-Lambda systems without maximal two-photon coherence," Phys. Rev. A 70, 063814 (2005). [CrossRef]
  29. M. Fleischhauer, "Mirrorless oscillation based on resonantly enhanced four-wave mixing: all-order analytic solutions," in Frontiers of Laser Physics and Quantum Optics, Z.Xu, S.Xie, S.-Y.Zhu, and M.O.Scully, eds. (Springer, 2000) pp. 97-106.
  30. L. Deng and M. G. Payne, "Achieving induced transparency with one- and three-photon destructive interference in a two-mode, three-level, double-Lambda system," Phys. Rev. A 71, 011803(R) (2005). [CrossRef]
  31. A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. M. Duan, and H. J. Kimble, "Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles," Nature 423, 731-734 (2003). [CrossRef] [PubMed]
  32. C. H. Van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, "Atomic memory for correlated photon states," Science 301, 196-200 (2003). [CrossRef] [PubMed]
  33. V. Balic, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, "Generation of paired photons with controllable waveforms," Phys. Rev. Lett. 94, 183601 (2005). [CrossRef] [PubMed]
  34. D. N. Matsukevich, T. Chanelière, M. Bhattacharya, S.-Y. Lan, S. D. Jenkins, T. A. B. Kennedy, and A. Kuzmich, "Entanglement of a photon and a collective atomic excitation," Phys. Rev. Lett. 95, 040405 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited