OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 7 — Jul. 1, 2006
  • pp: 1420–1433

Peak two-photon molecular brightness of fluorophores is a robust measure of quantum efficiency and photostability

Vijay Iyer, Molly J. Rossow, and M. Neal Waxham  »View Author Affiliations


JOSA B, Vol. 23, Issue 7, pp. 1420-1433 (2006)
http://dx.doi.org/10.1364/JOSAB.23.001420


View Full Text Article

Enhanced HTML    Acrobat PDF (915 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

To date, the suitability of a fluorophore for applications involving two-photon absorption has generally been characterized by its two-photon cross-section. Here we consider the robustness and significance of an alternative measure termed the molecular brightness—the fluorescence emission per molecule—which can be obtained readily by use of photon-counting techniques such as fluorescence correlation spectroscopy. The peak molecular brightness attained with increasing excitation intensity is shown to be a reliable benchmark for various fluorescent dye solutions. This figure of merit is considered both theoretically and experimentally and found to be related to the two-photon quantum efficiency and the photostability properties of a dye solution, while it is independent of the solution’s two-photon cross section. This benchmark carries considerable practical as well as scientific interest.

© 2006 Optical Society of America

OCIS Codes
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(300.6410) Spectroscopy : Spectroscopy, multiphoton

ToC Category:
Spectroscopy

History
Original Manuscript: November 22, 2005
Revised Manuscript: February 6, 2006
Manuscript Accepted: February 17, 2006

Virtual Issues
Vol. 1, Iss. 8 Virtual Journal for Biomedical Optics

Citation
Vijay Iyer, Molly J. Rossow, and M. Neal Waxham, "Peak two-photon molecular brightness of fluorophores is a robust measure of quantum efficiency and photostability," J. Opt. Soc. Am. B 23, 1420-1433 (2006)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-7-1420


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Göppert-Mayer, "Ueber Elementarakte mit zwei Quanenspruengen," Ann. Phys. 9, 273-294 (1931). [CrossRef]
  2. W. Kaiser and C. G. B. Garrett, "Two photon excitation in CaF2:Eu2+," Phys. Rev. Lett. 7, 229-231 (1961). [CrossRef]
  3. R. M. Hochstrasser, H. N. Sung, and J. E. Wessel, "Two photon excitation spectra. New and versatile spectroscopic tool," J. Am. Chem. Soc. 95, 8179-8180 (1973). [CrossRef]
  4. D. M. Friedrich and W. M. McClain, "Two-photon molecular electronic spectroscopy," Annu. Rev. Phys. Chem. 31, 559-577 (1980). [CrossRef]
  5. T. W. Hänsch, "Repetitively pulsed tunable dye laser for high resolution spectroscopy," Appl. Opt. 11, 895-898 (1972). [CrossRef] [PubMed]
  6. D. E. Spence, P. N. Kean, and W. Sibbett, "60-fsec pulse generation from a self-mode-locked Ti:sapphire laser," Opt. Lett. 16, 42-44 (1991). [CrossRef] [PubMed]
  7. W. Denk, J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fluorescence microscopy," Science 248, 73-76 (1990). [CrossRef] [PubMed]
  8. C. Xu and W. W. Webb, "Measurement of two-photon excitation cross sections of molecular fluorophores with date from 690 to 1050nm," J. Opt. Soc. Am. B 13, 481-491 (1996). [CrossRef]
  9. C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, "Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy," Proc. Natl. Acad. Sci. U.S.A. 93, 10,763-10,768 (1996). [CrossRef]
  10. M. Albota, D. Beljonne, J. L. Bredas, J. E. Ehrlich, J. Y. Fu, A. A. Heikal, S. E. Hess, T. Kogej, M. D. Levin, S. R. Marder, D. McCord-Maughon, J. W. Perry, H. Rockel, M. Rumi, G. Subramaniam, W. W. Webb, X. L. Wu, and C. Xu, "Design of organic molecules with large two-photon absorption cross sections," Science 281, 1653-1656 (1998). [CrossRef] [PubMed]
  11. S. M. Kirkpatrick, R. R. Naik, and M. O. Stone, "Nonlinear saturation and determination of the two-photon absorption cross section of green fluorescent protein," J. Phys. Chem. B 105, 2867-2873 (2001). [CrossRef]
  12. D. L. Wokosin, C. M. Loughrey, and G. L. Smith, "Characterization of a range of fura dyes with two-photon excitation," Biophys. J. 86, 1726-1738 (2004). [CrossRef] [PubMed]
  13. D. Magde, E. L. Elson, and W. W. Webb, "Thermodynamic fluctuations in a reacting system—measurement by fluorescene correlation spectroscopy," Phys. Rev. Lett. 29, 705-708 (1972). [CrossRef]
  14. S. Maiti, U. Haupts, and W. W. Webb, "Fluorescence Correlation spectroscopy: diagnostics for sparse molecules," Proc. Natl. Acad. Sci. U.S.A. 94, 11,753-11,757 (1997). [CrossRef]
  15. Y. Chen, J. D. Muller, Q. Ruan, and E. Gratton, "Molecular brightness characterization of EGFP in vivo by fluorescence fluctuation spectroscopy," Biophys. J. 82, 133-144 (2002). [CrossRef]
  16. K. G. Heinze, M. Jahnz, and P. Schwille, "Triple-color coincidence analysis: one step further in following higher order molecular complex formation," Biophys. J. 86, 506-516 (2004). [CrossRef]
  17. F. Cannone, M. Caccia, S. Bologna, A. Diaspro, and G. Chirico, "Single molecule spectroscopic characterization of GFP-MUT2 mutant for two-photon microscopy applications," Microsc. Res. Tech. 65, 186-193 (2004). [CrossRef]
  18. H. Ow, D. R. Larson, M. Srivastava, B. A. Baird, W. W. Webb, and U. Wiesner, "Bright and stable core-shell fluorescent silica nanoparticles," Nano Lett. 5, 113-117 (2005). [CrossRef] [PubMed]
  19. J. Yao, D. R. Larson, H. D. Viswasrao, W. R. Zipfel, and W. W. Webb, "Blinking and nonradiant dark fraction of water-soluble quantum dots in aqueous solution," Proc. Natl. Acad. Sci. U.S.A. 102, 14,284-14,289 (2005). [CrossRef]
  20. D. E. Koppel, "Statistical accuracy in fluorescence correlation spectroscopy," Phys. Rev. A 10, 1938-1945 (1974). [CrossRef]
  21. E. L. Elson and D. Magde, "Fluorescence correlation spectroscopy. I. Conceptual basis and theory," Biopolymers 13, 29-61 (1974). [CrossRef] [PubMed]
  22. B. Richards and E. Wolf, "Electromagnetic diffraction in the optical systems II. Structure of the image field in aplanatic system," Proc. R. Soc. London, Ser. A 253, 358-379 (1959). [CrossRef]
  23. W. R. Zipfel, R. M. Williams, and W. W. Webb, "Nonlinear magic: multiphoton microscopy in the biosciences," Nat. Biotechnol. 21, 1369-1377 (2003). [CrossRef] [PubMed]
  24. K. Berland and G. Shen, "Excitation saturation in two-photon fluorescence correlation spectroscopy," Appl. Opt. 42, 5566-5576 (2003). [CrossRef] [PubMed]
  25. A. Nagy, J. Wu, and K. M. Berland, "Observation volumes and gamma-factors in two-photon fluorescence fluctuation spectroscopy," Biophys. J. 89, 2077-2090 (2005). [CrossRef] [PubMed]
  26. J. Mertz, "Molecular photodynamics involved in multi-photon excitation fluorescence microscopy," Eur. Biophys. J. 3, 53-66 (1998).
  27. Y. Chen, J. D. Muller, P. T. So, and E. Gratton, "The photon counting histogram in fluoresence fluctuation spectroscopy," Biophys. J. 77, 553-567 (1999). [CrossRef] [PubMed]
  28. P. Schwille, U. Haupts, S. Maiti, and W. W. Webb, "Molecular dynamics in living cells observed by fluorescence correlation spectroscopy with one- and two-photon excitation," Biophys. J. 77, 2251-2265 (1999). [CrossRef] [PubMed]
  29. This can be considered akin to the relationship of the laser pulse width measured by an interferometric autocorrelator to the true laser pulse width.
  30. J. Widengren and R. Rigler, "Mechanisms of photobleaching investigated by fluoresence correlation spectroscopy," Bioimaging 4, 149-157 (2003). [CrossRef]
  31. P. Dittrich and P. Schwille, "Photobleaching and stabilization of fluorophores used for single-molecule analysis with one- and two-photon excitation," Appl. Phys. B 73, 829-837 (2001). [CrossRef]
  32. P. Bevington and D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill, 2003).
  33. G. A. Crosby and J. N. Demans, "Measurement of photoluminescence quantum yields. Review," J. Phys. Chem. 75, 991-1024 (1971). [CrossRef]
  34. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, 1999).
  35. S. S. Lehrer and P. C. Leavis, "Solute quenching of protein fluorescence," Methods Enzymol. 49, 222-236 (1978). [CrossRef] [PubMed]
  36. M. Hammer, D. Schweitzer, S. Richter, and E. Königsdörffer, "Sodium fluorescein as a retinal pH indicator?" Physiol. Meas. 26(4), N9-N12 (2005). [CrossRef] [PubMed]
  37. This was accomplished by variation of the intracavity group velocity dispersion. A Gaussian pulse shape was assumed, for which Delta τ Delta v=0.441, where v=c/lambda.
  38. H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, "Ca2+ fluorescence Imaging with pico- and femtosecond two-photon excitation: signal and photodamage," Biophys. J. 77, 2226-2236 (1999). [CrossRef] [PubMed]
  39. K. Konig, T. W. Becker, P. Fischer, I. Riemann, and K. J. Halbhuber, "Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes," Opt. Lett. 24, 113-115 (1999). [CrossRef]
  40. R. M. Dickson, A. B. Cubitt, R. Y. Tsien, and W. E. Moerner, "On/off blinking and switching behaviour of single molecules of green fluorescent protein," Nature 388, 355-358 (1997). [CrossRef] [PubMed]
  41. G. H. Patterson and D. W. Piston, "Photobleaching in two-photon excitation microscopy," Biophys. J. 78, 2159-2162 (2000). [CrossRef] [PubMed]
  42. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, "Water-soluble quantum dots for multiphoton fluorescence imaging in vivo," Science 300, 1434-1436 (2003). [CrossRef] [PubMed]
  43. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, "In vitro and in vivo two-photon luminescence imaging of single gold nanorods," Proc. Natl. Acad. Sci. U.S.A. 102, 15,752-15,756 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited