OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 7 — Jul. 1, 2006
  • pp: 1484–1489

High-order soliton breakup and soliton self-frequency shifts in a microstructured optical fiber

M. G. Banaee and Jeff F. Young  »View Author Affiliations


JOSA B, Vol. 23, Issue 7, pp. 1484-1489 (2006)
http://dx.doi.org/10.1364/JOSAB.23.001484


View Full Text Article

Enhanced HTML    Acrobat PDF (302 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Ultrashort pulse propagation in a polarization-maintaining microstructured fiber (with 1 μ m core diameter and 1.1 m length) is investigated experimentally and theoretically. For an 80 MHz train of 130 fs pulses with average powers up to 13.8 mW launched into the lowest transverse mode of the fiber, the output spectra consist of discrete, multiple solitons that shift continuously to lower energies. The number of solitons and the amount that they shift both increase with the launched power. All of the data are quantitatively consistent with solutions of the nonlinear Schrödinger equation, but only when the Raman nonlinearity is treated without approximation, and self-steepening is included. These results remove any ambiguity as to the nature of these multiple solitons; they arise owing to the breakup of high-order solitons in the presence of nonlinear processes beyond self-phase modulation.

© 2006 Optical Society of America

OCIS Codes
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons

ToC Category:
Photonic Crystals

History
Original Manuscript: August 5, 2005
Revised Manuscript: February 6, 2006
Manuscript Accepted: February 20, 2006

Citation
M. G. Banaee and Jeff F. Young, "High-order soliton breakup and soliton self-frequency shifts in a microstructured optical fiber," J. Opt. Soc. Am. B 23, 1484-1489 (2006)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-7-1484


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Knight, T. A. Birks, P. St. J. Russel, and D. M. Atkin, "All-silica single-mode fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549 (1996). [CrossRef] [PubMed]
  2. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russel, P. J. Roberts, and D. C. Allan, "Single-mode photonic bandgap guidance of light in air," Science 285, 1537-1539 (1999). [CrossRef] [PubMed]
  3. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, "Optical properties of low-loss polarization-maintaining photonic crystal fiber," Opt. Express 9, 676-680 (2001). [CrossRef] [PubMed]
  4. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001). [CrossRef] [PubMed]
  5. H. Lim, F. O. Ilday, and F. W. Wise, "Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control," Opt. Express 10, 1497-1502 (2002). [PubMed]
  6. J. E. Sharping, M. Fiorentino, P. Kumar, and R. S. Windeler, "All-optical switching based on cross-phase modulation in microstructure fiber," IEEE Photonics Technol. Lett. 14, 77-79 (2002). [CrossRef]
  7. I. F. Mollenhauer, R. H. Stolen, and J. P. Gordon, "Experimental observation of picosecond pulse narrowing and soliton in optical fiber," Phys. Rev. Lett. 45, 1095-1098 (1980). [CrossRef]
  8. W. J. Wadsworth, J. C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P. St. J. Russell, "Soliton effects in photonic crystal fibers at 850 nm," Electron. Lett. 36, 53-55 (2000). [CrossRef]
  9. N. A. Mortensen, "Effective area of photonic crystal fibers," Opt. Express 10, 341-348 (2002). [PubMed]
  10. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Supercontinuum generation by stimulated Raman scattering and parametric four-wave mixing in photonic crystal fiber," J. Opt. Soc. Am. B 19, 753-764 (2002). [CrossRef]
  11. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, "Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping," J. Opt. Soc. Am. B 19, 765-771 (2002). [CrossRef]
  12. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber," Opt. Lett. 26, 1356-1358 (2001). [CrossRef]
  13. A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, "Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses," J. Opt. Soc. Am. B 19, 2165-2170 (2002). [CrossRef]
  14. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man, and P. St. J. Russell, "Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source," J. Opt. Soc. Am. B 19, 2148-2155 (2002). [CrossRef]
  15. H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, and K.-I. Sato, "More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing," Electron. Lett. 36, 2089-2090 (2000). [CrossRef]
  16. R. Holzwarth, Th. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, "Optical frequency synthesizer for precision spectroscopy," Phys. Rev. Lett. 85, 2264-2267 (2000). [CrossRef] [PubMed]
  17. P. L. Baldeck and R. R. Alfano, "Intensity effects on the stimulated four photon spectra generated by picosecond pulses in optical fibers," J. Lightwave Technol. 5, 1712-1715 (1987). [CrossRef]
  18. R. H. Stolen, "Phase-matched-stimulated four-photon mixing in Silica-fiber waveguides," IEEE J. Quantum Electron. 11, 100-103 (1975). [CrossRef]
  19. P. Beaud, W. Hodel, B. Zysset, H. P. Weber, "Ultrashort pulse propagation, pulse break up, and fundamental soliton formation in a single-mode optical Fiber," IEEE J. Quantum Electron. 23, 1938-1946 (1987). [CrossRef]
  20. D. T. Reid, I. G. Cormack, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, "Soliton self-frequency shift effects in photonic crystal fiber," J. Mod. Opt. 49, 757-767 (2002). [CrossRef]
  21. B. R. Washburn, S. E. Ralph, P. A. Lacourt, J. M. Dudley, W. T. Rhodes, R. S. Windeler, and S. Coen, "Tunable near-infrared femtosecond soliton generation in photonic crystal fibers," Electron. Lett. 37, 1510-1512 (2001). [CrossRef]
  22. B. R. Wahburn, S. E. Ralph, and R. S. Winderler, "Ultrashort pulse propagation in air-silica microstructure fiber," Opt. Express 10, 575-580 (2002).
  23. A. Ortigosa-Blanch, J. C. Knight, and P. St. J. Russell, "Pulse breaking and supercontinuum generation with 200-fs pump pulses in photonic crystal fibers," J. Opt. Soc. Am. B 19, 2567-2572 (2002). [CrossRef]
  24. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, "Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers," Opt. Express 10, 1083-1098 (2002). [PubMed]
  25. C. F. Chen and S. Chi, "Femtosecond second-order solitons in optical fiber transmission," Optik 116, 331-336 (2005). [CrossRef]
  26. F. M. Mitschke and L. F. Mollenauer, "Discovery of the soliton self-frequency shift," Opt. Lett. 11, 659-661 (1986). [CrossRef] [PubMed]
  27. J. P. Gordon, "Theory of the soliton self-frequency shift," Opt. Lett. 11, 662-664 (1986). [CrossRef] [PubMed]
  28. G. Dong and Z. Liu, "Soliton resulting from the combined effect of higher-order dispersion, self-steepening and nonlinearity in an optical fiber," Opt. Commun. 128, 8-14 (1996). [CrossRef]
  29. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  30. L. F. Mollenauer, R. H. Stolen, J. P. Gorden, and W. J. Tomlinson, "Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers," Opt. Lett. 8, 289-291 (1983). [CrossRef] [PubMed]
  31. A. Hasegawa and M. Matsumoto, Optical Solitons in Fibers (Springer, 2003).
  32. W. Hodel and H. P. Weber, "Decay of femtosecond higher-order solitons in an optical fiber induced by Raman self-pumping," Opt. Lett. 12, 924-926 (1987). [CrossRef] [PubMed]
  33. K. Tai, A. Hasegawa, and N. Bekki, "Fission of optical solitons induced by stimulated Raman effect," Opt. Lett. 13, 392-394 (1988). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited