OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 8 — Aug. 1, 2006
  • pp: 1524–1530

Homogeneous Raman gain saturation at high pump and Stokes powers

Sergey A. Babin, Dmitriy V. Churkin, Sergey I. Kablukov, and Evgeny V. Podivilov  »View Author Affiliations


JOSA B, Vol. 23, Issue 8, pp. 1524-1530 (2006)
http://dx.doi.org/10.1364/JOSAB.23.001524


View Full Text Article

Enhanced HTML    Acrobat PDF (111 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A Raman gain spectral profile has been measured in a phosphosilicate fiber at high pump and Stokes (signal) wave powers by a coherent anti-Stokes Raman scattering (CARS) technique. It has been shown that the profile saturates homogeneously. The main saturation mechanism is proved to be the pump depletion; i.e., the Raman gain coefficient g R does not depend on the pump and signal wave power of several watts. The possible influence of stimulated Brillouin scattering and four-wave mixing is discussed. In addition, a transient regime of the CARS signal has been experimentally observed and theoretically explained.

© 2006 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5650) Nonlinear optics : Raman effect
(300.6450) Spectroscopy : Spectroscopy, Raman

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: September 30, 2005
Revised Manuscript: March 6, 2006
Manuscript Accepted: March 25, 2006

Citation
Sergey A. Babin, Dmitriy V. Churkin, Sergey I. Kablukov, and Evgeny V. Podivilov, "Homogeneous Raman gain saturation at high pump and Stokes powers," J. Opt. Soc. Am. B 23, 1524-1530 (2006)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-23-8-1524


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Namiki and Y. Emory, "Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes," IEEE J. Sel. Top. Quantum Electron. 7, 3-16 (2001). [CrossRef]
  2. M. D. Mermelstein, C. Headley, J.-C. Bouteiller, P. Steinvurzel, C. Horn, K. Feder, and B. G. Eggleton, "Configurable three-wavelength Raman fiber laser for Raman amplification and dynamic gain flattening," IEEE Photon. Technol. Lett. 13, 1286-1288 (2001). [CrossRef]
  3. M. Bolshtyansky, "Spectral hole burning in erbium-doped fiber amplifiers," J. Lightwave Technol. 21, 1032-1038 (2003). [CrossRef]
  4. D. G. Dugg, F. Heismann, N. Litchinitser, M. F. Arend, E. Golovchenko, and M. Nissov, "Impact of spectral hole burning on long haul WDM transmission system performance," in Optical Amplifiers and Their Applications, A.Mecozzi, M.Shimizu, and J.Zyskind, eds., Vol. 44 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2001), paper OMD2.
  5. G. E. Walrafen and P. N. Krishnan, "Model analysis of the Raman spectrum from fused silica optical fibers," Appl. Opt. 21, 359-360 (1982). [CrossRef] [PubMed]
  6. D. Hollenbeck and C. D. Cantrell, "Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function," J. Opt. Soc. Am. B 19, 2886-2892 (2002). [CrossRef]
  7. Y. Takushima and K. Kikuchi, "Spectral gain hole burning and modulation instability in a Brillouin fiber amplifier," Opt. Lett. 20, 34-36 (1995). [CrossRef] [PubMed]
  8. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 1997), Chap. 8.
  9. C. J. S. de Matos, D. A. Chestnut, P. C. Reeves-Hall, F. Koch, and J. R. Taylor, "Multi-wavelength, continuous wave fibre Raman ring laser operating at 1.55 μm," Electron. Lett. 37, 825-826 (2001). [CrossRef]
  10. C.-S. Kim, R. M. Sova, and J. U. Kang, "Tunable multi-wavelength all-fiber Raman source using fiber Sagnac loop filter," Opt. Commun. 218, 291-295 (2003). [CrossRef]
  11. P.-C. Peng, H.-Y. Tseng, and S. Chi, "Long-distance FBG sensor system using a linear-cavity fiber Raman laser scheme," IEEE Photon. Technol. Lett. 16, 575-577 (2004). [CrossRef]
  12. Y.-G. Han, S. B. Lee, D. S. Moon, and Y. Chung, "Investigation of a multiwavelength Raman fiber laser based on few-mode fiber Bragg gratings," Opt. Lett. 30, 2200-2202 (2005). [CrossRef] [PubMed]
  13. S. A. Babin, D. V. Churkin, and E. V. Podivilov, "Intensity interactions in cascades of a two-stage Raman fiber laser," Opt. Commun. 226, 329-335 (2003). [CrossRef]
  14. Y. Wang and H. Po, "Impact of cavity losses on cw Raman fiber lasers," Opt. Eng. 42, 2872-2879 (2003). [CrossRef]
  15. S. A. Babin, D. V. Churkin, E. V. Podivilov, and A. S. Kurkov, "Spectral broadening and intensity interactions in cascades of a Raman fiber laser: analytical model and experimental test," in Optical Fiber Communication Conference, Vol. 95 of OSA Trends in Optics and Photonics Series (Optical Society of America, 2004), paper WB6.
  16. P. Suret and S. Randoux, "Influence of spectral broadening on steady characteristics of Raman fiber lasers: from experiments to questions about validity of usual models," Opt. Commun. 237, 201-212 (2004). [CrossRef]
  17. S. A. Babin, D. V. Churkin, S. I. Kablukov, and E. V. Podivilov, "Raman gain saturation at high pump and Stokes powers," Opt. Express 13, 6079-6084 (2005). [CrossRef] [PubMed]
  18. K. Suzuki and M. Nakazawa, "Raman amplification in a P2O5-doped optical fiber," Opt. Lett. 13, 666-668 (1988). [CrossRef] [PubMed]
  19. A. R. Chraplyvy, J. Stone, and C. A. Burrus, "Optical gain exceeding 35 dB at 1.56 μm due to stimulated Raman scattering by molecular D2 in a solid silica optical fiber," Opt. Lett. 8, 415-417 (1983). [CrossRef] [PubMed]
  20. N. R. Newbury, "Raman gain: pump-wavelength dependence in single-mode fiber," Opt. Lett. 27, 1232-1234 (2002). [CrossRef]
  21. E. M. Dianov, M. V. Grekov, I. A. Bufetov, S. A. Vasiliev, O. I. Medvedkov, V. G. Plotnichenko, V. V. Koltashev, A. V. Belov, M. M. Bubnov, S. L. Semjonov, and A. M. Prokhorov, "CW high power 1.24 μm and 1.48 μm Raman lasers based on low loss phosphosilicate fibre," Electron. Lett. 33, 1542-1544 (1997). [CrossRef]
  22. J. Auyeung and A. Yariv, "Theory of cw Raman oscillation in optical fibers," J. Opt. Soc. Am. 69, 803-807 (1979). [CrossRef]
  23. S. Cierullies, M. Krause, H. Renner, and E. Brinkmeyer, "Experimental and numerical study of the switching dynamics of Raman fiber lasers," Appl. Phys. B 80, 177-183 (2005). [CrossRef]
  24. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, "Stimulated Brillouin scattering of frequency stabilized radiation in a fiber," in ICONO: Nonlinear Optical Phenomena, K.Drabovich, V.Makarov, and Y.-R.Shen, eds., Proc. SPIE 6259, 243-250 (2006).
  25. Q. Wang, Y. Wang, W. Zhang, X. Feng, X. Liu, and B. Zhou, "Inhomogeneous loss mechanism in multiwavelength fiber Raman ring lasers," Opt. Lett. 30, 952-954 (2005). [CrossRef] [PubMed]
  26. N. S. Kim, M. Prabhu, C. Li, J. Song, and K.-I. Ueda, "1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral continuum generation," Opt. Commun. 176, 219-222 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited