OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: G. I. Stegeman
  • Vol. 23, Iss. 8 — Aug. 1, 2006
  • pp: 1586–1599

Electromagnetic modes in dielectric equilateral triangle resonators

Gary M. Wysin  »View Author Affiliations

JOSA B, Vol. 23, Issue 8, pp. 1586-1599 (2006)

View Full Text Article

Enhanced HTML    Acrobat PDF (492 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Resonant electromagnetic modes are analyzed inside a dielectric cavity of equilateral triangular cross section and refractive index n, surrounded by a uniform medium of refractive index n . The field confinement is determined only under the requirements needed to maintain total internal reflection of the internal electromagnetic fields, matched to external evanescent waves. Two-dimensional electromagnetics is considered, with no dependence on the coordinate perpendicular to the cross section, giving independent TE and TM polarizations. Generally, the mode spectrum becomes sparse and the minimum mode frequency increases rapidly as the index ratio N = n n approaches 2. For specified quantum numbers and N, the TM modes are lower in frequency than the TE modes. Quality factors are estimated by supposing that evanescent boundary waves leak cavity energy at the triangle vertices; diffractive effects are not included. At an index ratio that is large compared with a mode’s cutoff ratio, this method predicts greater field confinement for TE polarization and higher quality factors than for TM polarization.

© 2006 Optical Society of America

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(230.5750) Optical devices : Resonators
(260.6970) Physical optics : Total internal reflection

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 5, 2005
Revised Manuscript: March 17, 2006
Manuscript Accepted: March 28, 2006

Gary M. Wysin, "Electromagnetic modes in dielectric equilateral triangle resonators," J. Opt. Soc. Am. B 23, 1586-1599 (2006)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering gallery modes in microdisk lasers," Appl. Phys. Lett. 60, 289-291 (1992). [CrossRef]
  2. H. C. Chang, G. Kioseoglou, E. H. Lee, J. Haetty, M. H. Na, Y. Xuan, H. Luo, A. Petrou, and A. N. Cartwright, "Lasing modes in equilateral-triangular laser cavities," Phys. Rev. A 62, 013816 (2000). [CrossRef]
  3. Q. Y. Lu, X. H. Chen, W. H. Guo, L. J. Yu, Y. Z. Huang, J. Wang, and Y. Luo, "Mode characteristics of semiconductor equilateral triangle microcavities with side length of 5-20 μm," IEEE Photonics Technol. Lett. 16, 359-361 (2004). [CrossRef]
  4. A. W. Poon, F. Courvoisier, and R. K. Chang, "Multimode resonances in square-shaped optical microcavities," Opt. Lett. 26, 632 (2001). [CrossRef]
  5. C. Y. Fong and A. W. Poon, "Mode field patterns and preferential mode coupling in planar waveguide-coupled square microcavities," Opt. Express 11, 2897-2904 (2003). [CrossRef] [PubMed]
  6. H.-J. MoonK. An, and J.-H. Lee, "Single spatial mode selection in a layered square microcavity laser," Appl. Phys. Lett. 82, 2963-2965 (2003). [CrossRef]
  7. U. Vietze, O. Krauß, F. Laeri, G. Ihlein, F. Schüth, B. Limburg, and M. Abraham, "Zeolite-dye microlasers," Phys. Rev. Lett. 81, 4628-4631 (1998). [CrossRef]
  8. I. Braun, G. Ihlein, F. Laeri, J. U. Nöckel, G. Schulz-Ekloff, F. Schüth, U. Vietze, Ö. Weiß, and D. Wöhrle, "Hexagonal microlasers based on organic dyes in nanoporous crystals," Appl. Phys. B: Lasers Opt. 70, 335-343 (2000). [CrossRef]
  9. M. G. Lamé, Leçons sur la Théorie Mathématique de L'elasticité des Corps Solides, (Bachelier, 1852), Chap. 57.
  10. Y. Z. Huang, "Eigenmode confinement in semiconductor microcavity lasers with an equilateral triangle resonator," Proc. SPIE 3899, 239-246 (1999). [CrossRef]
  11. W. H. GuoY. Z. Huang, and Q. M. Wang, "Resonant frequencies and quality factors for optical equilateral triangle resonators calculated by FDTD technique and the Padé approximation," IEEE Photonics Technol. Lett. 12, 813-815 (2000). [CrossRef]
  12. Y. Z. Huang, W. H. Guo, and Q. M. Wang, "Analysis and numerical simulation of eigenmode characteristics for semiconductor lasers with an equilateral triangle micro-resonator," IEEE J. Quantum Electron. 37, 100-107 (2001). [CrossRef]
  13. S. Dey and R. Mittra, "Efficient computation of resonant frequencies and quality factors via a combination of the finite-difference time-domain technique and the Padé approximation," IEEE Microw. Guid. Wave Lett. 8, 415-417 (1998). [CrossRef]
  14. G. M. Wysin, "Resonant mode lifetimes due to boundary wave emission in equilateral triangular dielectric cavities," J. Opt. A Pure Appl. Opt. 7, 502 (2005). [CrossRef]
  15. J. D. Jackson, Classical Electrodynamics (Wiley, 1975) 2nd ed., Chap. 8, pp. 342-346.
  16. M. Brack and R. K. Bhaduri, Semiclassical Physics, Addison-Wesley Frontiers in Physics Series (Addison Wesley, 1997).
  17. Y. Z. Huang, W. H. Guo, L.-J. Yu, and H.-B. Lei, "Analysis of semiconductor microlasers with an equilateral triangle resonator by rate equations," IEEE J. Quantum Electron. 37, 1259-1264 (2001). [CrossRef]
  18. J. Wiersig, "Hexagonal dielectric resonators and microcrystal lasers," Phys. Rev. A 67, 023807 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited